
R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.): ASWC 2006, LNCS 4185, pp. 4 – 23, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Transformation from OWL Description to Resource
Space Model*

Hai Zhuge, Peng Shi, Yunpeng Xing, and Chao He

China Knowledge Grid Research Group,
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, 100080, China
{zhuge, pengshi, ypxing, hc}@kg.ict.ac.cn

Abstract. Semantics shows diversity in real world, document world, mental ab-
straction world and machine world. Transformation between semantics pursues
the uniformity in the diversity. The Resource Space Model (RSM) is a semantic
data model for organizing resources based on the classification semantics that
human often use in understanding the real world. The design of a resource
space relies on knowledge about domain and the RSM. Automatically creating
resource space can relieve such reliance in RSM applications. This paper pro-
poses an approach to automatically transform Web Ontology Language descrip-
tion into resource space. The normal forms of the generated resource space are
investigated to ensure its normalization characteristic. The Dunhuang culture
resource space is used to illustrate the approach.

1 Introduction

The machine-understandable semantics is commonly regarded as the key to the Se-
mantic Web [3]. The W3C (www.w3.org) recommended the Web Ontology Language
(OWL) in 2004 to support advanced Semantic Web applications by facilitating publi-
cation and sharing of ontology (www.w3.org/2004/OWL/).

The Resource Space Model (RSM) is a semantic model for uniformly specifying and
organizing resources [16, 17]. It maps various resources (information, knowledge and
services) into a multi-dimensional semantic space ⎯ a semantic coordinate system that
normalizes the classification semantics. Each point in the space represents the resources
of the same semantic category. Normal form and integrity theories of the RSM ensure
correct semantic representation and operations [19]. The RSM theory is developed in
parallel with the relational database theory [20].

The design of resource space is based on domain knowledge, application require-
ment and knowledge of RSM. The design method was proposed to guide the process
of developing an appropriate resource space [18]. However, it still relies on design-
ers’ knowledge about domain and RSM. To relieve such reliance is an important
issue of the RSM methodology.

The development of domain ontology makes codified domain knowledge. It will
be very useful if we can codify the knowledge about RSM into an approach for auto-

* Keynote at ASWC2006. This work was supported by the National Basic Research Program

of China (973 project No.2003CB317000) and the National Science Foundation of China.

 Transformation from OWL Description to Resource Space Model 5

matically transforming domain ontology into resource space. The semantics in OWL
description can be used to support the creation of resource space.

This paper proposes an approach to automatically transform an OWL description
into a resource space to enhance the efficiency of RSM design and relieve the reliance
on individual knowledge by converting individuals of OWL to resources of RSM and
transforming the inheritance hierarchy relationships and properties of resources into
axes of RSM.

Relevant work includes the transformation between OWL service and the Unified
Modeling Language (UML) [7], the converting from OWL ontology to UML [6], the
bidirectional mapping between Attempto Controlled English (ACE) and OWL [10],
converting from OWL DLP statements to logic programs [12], and the method for
converting the existing thesauri and related resources from native format to RDF(S)
or OWL [1]. A method reflecting the taxonomic relationship of products and service
categorization standards (PSCS) in an OWL Lite ontology was proposed [9].

Related work also concerns software engineering area. The structural software de-
velopment can be regarded as a multiple step transformation from the semantic speci-
fication on domain business into the semantic specification on software. Semantic
specification tools like the Entity-Relationship model help developers transform do-
main business into relational model [4, 13]. The transformation from the E-R model
into the relational database was investigated [2, 5, 15].

2 The Synergy of the Semantics in Real World, Document World
and Abstraction World

Real world semantics used by human is hard to be understood by machines. Model-
ing languages like UML are for specifying real world semantics in standardized sym-
bol systems.

Semantics in the mental world can be intuitive or abstract. Abstract semantics
takes the form of symbolized and geometrical principles and theories. Human often
use classification method to recognize the real-world. The implementation of the
classification-based RSM depends on the data structures in the machine world, while
the display of a resource space can be in the geometrical form of the abstraction
world.

Semantics in the machine world is hard for ordinary people to understand. The
XML, RDF and OWL mediate the machine world and the document world at differ-
ent semantic levels.

Different semantics overlap and interact with each other to establish and develop
the interconnection semantics as shown in Fig. 1. The future interconnection envi-
ronment needs the synergy of the diversity and uniformity of semantics in the real
world, the document world and the mental abstraction world. Automatic transforma-
tion between semantics of different levels is an important issue. The transformation
from an OWL description to the RSM generalizes the semantics in the machine world
and the document world. Since RSM is based on classification semantics, the created
resource space (called OWL-based resource space) does not keep all the semantics
described in OWL file. Transformations from OWL into abstract SLN and from
UML into OWL are also significant.

6 H. Zhuge et al.

Fig. 1. The synergy of the semantics of four worlds in future interconnection environment

3 Basic Elements of OWL and an Example of RSM

Ontology facilitates the uniformity and sharing of domain knowledge by five types of
basic modeling primitives: classes or concepts, relations, functions, axioms and in-
stances [8, 14]. OWL provides three increasingly expressive sublanguages designed
for specific users. OWL Lite is for the users who primarily need classification hierar-
chy and simple constraint features. OWL DL supports the maximum expressiveness
without losing computational completeness and decidability of reasoning systems.
OWL Full supports maximum expressiveness and the syntactic freedom of RDF with-
out computational guarantees.

The following are basic elements of OWL:

(1) Class defines a class. An individual is an instance of a class.
(2) rdfs:subClassOf specifies the subclass relation.
(3) Properties are owned by classes or instances and divided into two types: Object-

Property and DatatypeProperty. ObjectProperty specifies the relation between
two instances, which belong to the same or different classes. DatatypeProperty
indicates the relation between instance and RDF literals or XML Schema
datatypes such as string, float or date.

(4) rdfs:subPropertyOf represents the inheritance of properties.

Real world

Abstract SLN

DocumentsData

UML

Document world

Mental abstraction world

Data structures

Machine World

Web Pages

RDF

XML

OWLEntity SLN

RSM

 Transformation from OWL Description to Resource Space Model 7

Fig. 2. The three-dimensional resource space browser

(5) rdfs:domain and rdfs:range restrict the anterior and posterior values of a prop-
erty respectively. There are also some characteristics and restrictions, such as
TransitiveProperty, SymmetricProperty, allValuesFrom and Cardinality, for de-
scribing property.

The following elements in OWL are used to improve the ability of describing the
relations between classes, individuals and properties.

(1) equivalentClass and equivalentProperty represent the equivalence between
classes and properties respectively.

(2) sameAs indicates that two individuals with different names are logically equal.
(3) differentFrom and AllDifferent explicitly distinguish one individual from others.
(4) intersectionOf, unionOf and complementOf are for set operation. They usually

represent how a class is composed by other classes.
(5) disjointWith prevents a member of one class from being that of another class.

These elements help the mapping between different ontologies and describe more
complex relationships between classes and individuals.

The most commonly used resource space is two- or three-dimensional, which can
be displayed on screen and manipulated by users with ease. Fig.2 shows a three-
dimensional resource space browser for Dunhuang culture exhibition. Resources can
be located and manipulated by moving the black cube representing a point in the
space. The black cube can be controlled by moving mouse and clicking the “In” and
“Out” buttons.

4 Transformation from OWL Description into RSM

4.1 Process of Transformation

The main process of creating resource space from OWL file is shown in Fig.3. The
input consists of the ancestor classes and the OWL file. The ancestor classes are the
top-level classification of resources in an application.

8 H. Zhuge et al.

The first step is to eliminate synonym in OWL file as the equivalentClass, equiva-
lentProperty and sameAs in OWL may cause classification confusion when creating a
resource space. A solution is to use one complex name to replace the synonyms.

Some individuals in OWL are transformed into resources in resource space. The
inheritance hierarchy relationships and properties of resources in OWL are converted
into axes of the OWL-based resource space.

Inheritance
hierarchy

Datatype
properties

Ancestor
classes

Object
properties

Inheritance

axis

OWL-based Resource Space

OWL file

Properties

Datatype axesResources

Individuals

Object axes

Fig. 3. The main process of creating resource space from OWL file

4.2 From Individuals to Resources

The individuals belonging to the ancestor classes in OWL file can be transformed into
resources in resource space. The following are examples of two individuals:

<BMP rdf: ID="instance_0001">
<NAME rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
cave305.bmp
</NAME>
<AUTHOR rdf:resource="Mr.Zhao"/>
……

</BMP>
<RESEARCHER rdf: ID="Mr.Zhao">
 <AGE rdf:datatype="http://www.w3.org/2001/XMLSchema#unsignedInt">

40</AGE>
 ……
</RESEARCHER>

 Transformation from OWL Description to Resource Space Model 9

The individual "instance_0001" is an instance of class “BMP”. It owns two proper-
ties “NAME” and “AUTHOR”. “Mr.Zhao” is also an individual which is instantiated
from the class “RESEARCHER”. Here the input ancestor class is “File”. Only indi-
viduals inherited from it are regarded as resources. Therefore, the former individual
is a resource. The latter indicates the value of property “AUTHOR” of “in-
stance_0001”, so it will not be regarded as a resource in this example.

4.3 From Inheritance Hierarchy to Inheritance Axis

The ancestor classes inherently represent classification. This corresponds to the classi-
fication principle of RSM, so inheritance hierarchy of resources in OWL will be
transformed into an axis named inheritance.

The process of forming inheritance axis consists of three steps:

(1) Parse the OWL file to find the subclasses and instances of every input ancestor
class; and,

(2) Form a hierarchical structure like Fig. 4 according to their inheritance relation-
ships: node represents class or instance and edge represents the inheritance rela-
tionship between classes or the instance relationship between instance and its
class. So each edge starts from a class and ends at its super class or starts from
an instance and ends at its class. The hierarchical structure is a top-down di-
rected graph with ancestor classes at the top level and the instances (resources)
at bottom level.

(3) Transform the structure into a tree or trees, which are taken as the coordinates.

In Dunhuang culture resource space, the class “File” is the input ancestor class to
create the file resource space. It has four subclasses: “document”, “image”, “audio”
and “video”, which also have their own subclasses. The subclasses of “document” are
“PDF” and “TXT”. They indicate different types of files. Their declarations in Dun-
huang OWL file are as follows:

<owl:Class rdf:ID="File"/>
<owl:Class rdf:ID="image">
 <rdfs:subClassOf rdf:resource="File"/>
 </owl:Class>
 <owl:Class rdf:ID="JPEG">
 <rdfs:subClassOf rdf:resource="image"/>
 </owl:Class>
 <owl:Class rdf:ID="BMP">
 <rdfs:subClassOf rdf:resource="image"/>
 </owl:Class>
 <owl:Class rdf:ID="document">
 <rdfs:subClassOf rdf:resource="File"/>
 </owl:Class>
 <owl:Class rdf:ID="PDF">
 <rdfs:subClassOf rdf:resource="document"/>
 </owl:Class>
 <owl:Class rdf:ID="TXT">
 <rdfs:subClassOf rdf:resource="document"/>

10 H. Zhuge et al.

 </owl:Class>
 <owl:Class rdf:ID="video">
 <rdfs:subClassOf rdf:resource="File"/>
 </owl:Class>
 <owl:Class rdf:ID="AVI">
 <rdfs:subClassOf rdf:resource="video"/>
 </owl:Class>
 <owl:Class rdf:ID="SWF">
 <rdfs:subClassOf rdf:resource="video"/>
 </owl:Class>
 <owl:Class rdf:ID="audio">
 <rdfs: subClassOf rdf: resource="File"/>
 </owl:Class>
 <owl:Class rdf:ID="MP3">
 <rdfs:subClassOf rdf:resource="audio"/>
 </owl:Class>
 <BMP rdf:ID="instance_0001">… </BMP>
 <TXT rdf:ID="instance_0011">…</TXT>
 <AVI rdf:ID="instance_0021">… </AVI>

The inheritance structure in Fig.4 includes the ancestor class, its offspring classes
and these instances (resources). The top level is “File”. The second level includes
“document”, “image”, “video” and “audio”. The lower level includes “PDF”, “TXT”,
“JPEG”, “BMP”, “MP3”, “AVI” and “SWF”. The instances are resources at the bot-
tom level. The resource “instance_0001”, “instance_0011” and “instance_0021” are
instances of “BMP”, “TXT” and “AVI” respectively.

If the inheritance hierarchy is a tree or trees, it can be transformed into an axis to
represent the category of resources. This axis is called inheritance axis. The elements
in the hierarchy are the coordinates on inheritance axis except for the instances. If the
hierarchy is a tree, there is only one node at the top level. This node will not be a
coordinate on inheritance axis because it cannot classify resources. A resource’s co-
ordinates on this axis is composed of its class and ancestor classes together. The coor-
dinates at different levels represent different scales of classification. In Dunhuang
resource space, the inheritance hierarchy is a tree, so it can be transformed into an
inheritance axis directly named “Format”. As shown in Fig.5, the top level coordi-
nates on this axis include “document”, “image”, “audio” and “video”. The second
level coordinates are “TXT”, “PDF”, “JPEG”, “BMP”, “MP3”, “AVI” and “SWF”.
The coordinate of “instance_0011” on this axis is “document.TXT”, where the dot
separates coordinates on different scales.

OWL supports multiple-inheritance, that is, the inheritance structure is not a tree
but a graph. The graph should be converted into tree(s) because the coordinates on an
axis in RSM should be tree(s). Algorithm 1 converts an inheritance graph into tree(s).
Multiple-inheritance indicates that one subclass inherits from two or more classes. It
implies that the parent classes cannot classify the resources independently. So the
algorithm eliminates the nodes of parent classes and linked edges directly from the
hierarchy. The subclasses are reserved as the top level elements of the derived tree.

 Transformation from OWL Description to Resource Space Model 11

This algorithm guarantees that the output tree contains the resources and their parent
classes at least. Here the function outdegree() and indegree() are used to get the out-
degree and indegree of node in a graph respectively. setMark() and getMark() are for
setting or getting markers of nodes. getParent() is for getting the parent class of a
node in a graph. getUntreatedNumber() is for getting the number of untreated nodes
in T.

Fig. 4. The inheritance hierarchy of resources in Dunhuang application. The solid and dashed
rectangles indicate classes and instances respectively. The solid and dashed arrows indicate
inheritance relationships and instance relationships respectively.

Fig. 5. The inheritance axis of Dunhuang resource space

Algorithm 1. void GraphToTree(Graph G , Tree T)
{/*convert a connected directed graph G into a tree(s)
T*/
 For every node
 {/*treat from the bottom level*/
 If(outdegree(node, G) = 0) {/*a bottom node*/
 Output node into T as a leaf;
 If(indegree(node, G) = 0) {
 Show message “error: an individual hasn’t
class”;
 Return;
 }

TXT

video
Format

document

PDF AVI SWF

instance_0011 instance_0021

(Inheritance axis)

MP3

audio image

JPEG BMP

instance_0001

Audio

TXT PDF

Document Video

File

instance_0011

AVI SWF MP3

instance_0021 instance_0001

JPEG

Image

BMP

12 H. Zhuge et al.

 Else if(indegree(node, G)=1) {/*uni-
inheritance*/
 setMark(node, T, treated);
 Output getParent(node,G) into T;
 }
 }
 }
 While(getUntreatedNumber(T)>0) {
 Get an untreated node from T;
 If(indegree(node, G) = 1) {/*qualified node*/
 If(getMark(getParent(node,G)) != deleted) {
 Output getParent(node, G) as parent of node
into T;
 }
 }
 Else if(indegree(node, G)>1) {/*multi-
inheritance*/
 For every ancestor of node in G {
 If(getMark(ancestor, G) != deleted) {
 setMark(ancestor, G, deleted);
 Delete ancestor from T;
 }
 }
 }
 setMark(node, T, treated); /*mark treated node*/
 }
}

In OWL, concrete classes may own subclasses and instances, but abstract classes
can only have subclasses. For a concrete class that has both subclasses and instances,
it is possible that the instances of the concrete class cannot be located by the subclass
coordinates. For example in Fig.6 (a), the concrete class “Manager” has a subclass
“Director” and three instances “Jane”, “Joe” and “Mary”. “Director” has its own in-
stance “Tim”. If this structure is converted into coordinates of the inheritance axis, the
coordinates include “Manager” and “Director” at two levels. The coordinate “Direc-
tor” can only specify “Tim”, but cannot specify “Jane”, “Joe” or “Mary”. There are
two strategies to deal with this kind of concrete classes: (1) discard its subclasses and
combine the instances of subclasses into it; (2) add a new subclass for the concrete
class, instances of the concrete class can be identified as instances of the subclass
added. The former strategy weakens the classification semantics of resources but
simplifies the process. The latter enhances the classification semantics.

Algorithm 2 is to check and deal with concrete classes. The parameter bDiscard
distinguishes the two strategies. If bDiscard = true, subclasses are discarded. Other-
wise a new subclass is added whose name is provided by the parameter newClass-
Name. Fig.6 (b) is the result when bDiscard=true. The subclass “Director” is deleted
and its instance “Tim” becomes the instance of “Manager”. Fig.6 (c) shows the result
when bDiscard=false. A new subclass named “General Director” is added with
“Jane”, “Joe” and “Mary” as its instances. The result is transformed into the coordi-
nates on the inheritance axis.

 Transformation from OWL Description to Resource Space Model 13

Fig. 6. An example of processing concrete class

Algorithm 2. Boolean CheckAndChangeConcreteClass (Class
conClass, Boolean bDiscard, String newClassName) {
 If(conClass has both instances and subclasses) {
 If(bDiscard) { /*discard subclasses*/
 For every subclass of conClass {
 Move its instances into conClass;
 Delete subclass;
 }
 }
 Else{ /*add a new subclass*/
 Create a new class named newClassName;
 Get all instances of conClass;
 Move the instances into newClassName;
 Add newClassName as a subclass of conClass;
 }
 Return true;
 }
 Else{/*need not be modified*/
 Return false;
 }
}

Then an inheritance axis is created according to inheritance relationships of re-
sources and their ancestor classes. There is only one inheritance axis in the OWL-
based resource space. The hierarchical coordinates provide users with multiple scale
location according to application requirements.

Manager

Mary Joe JaneTim

Manager

Director General Manager

(b) Result of discarding subclasses

Mary Joe Jane Tim

Manager

Director

MaryJoe Jane Tim

(a) Concrete class Manager with both subclass and instances

(c) Result of adding subclass

14 H. Zhuge et al.

4.4 From Properties to Property Axes

Properties in OWL are used to describe characteristics of classes and individuals.
They can be adopted as classification principles of resources in RSM as well. If the
domain of a property includes the ancestor classes, it can be transformed into a prop-
erty axis. The property is called source property of the axis.

“DatatypeProperty” declares a property with one of data types, which come from
RDF literals and XML Schema data types. The property value belongs to the specified
datatype. A datatype property can be converted into an axis called datatype axis in
OWL-based resource space. The axis is named after the property name and its coordi-
nates include all elements within the property value range. If the range of datatype prop-
erty is only specified as a kind of datatype without other restrictions, the elements in the
range may be finite (such as “boolean” type) or infinite (such as “string” and “int” type).
Because the coordinates on an axis must be finite, the unqualified property should clas-
sify their values into finite classes at first. Different datatypes use different strategies to
classify its infinite elements into finite classes so as to ensure no intersection between
classes. For example, “string” may be classified according to alphabet order. The classi-
fication strategy may contain hierarchical structure to classify resources with different
scales. But the fixed classification approach classifies various resources into the same
classes. Other classification methods in pattern recognition and text processing can be
adopted to classify resources according to their characteristics. The restrictions of
datatype property range are allowed in OWL. For convenience, Dunhuang OWL im-
ports “xsp.owl” developed by Protégé to restrict data types. For example, Dunhuang
resources have an “unsignedInt” type property “CaveNo” to specify which cave the
resources reside in. Its declaration is as follows:

<owl:DatatypeProperty rdf:ID="CaveNo">
<rdfs:domain>

<owl:Class rdf:resource="File"/>
</rdfs:domain>
<rdfs:range>

<rdfs:Datatype>
<xsp:base
rdf:resource="http://www.w3.org/2001/XMLSchema#unsignedInt"/>
<xsp:minInclusive
rdf:datatype="http://www.w3.org/2001/XMLSchema#unsignedInt">
1</xsp:minInclusive>
<xsp:maxInclusive
rdf:datatype="http://www.w3.org/2001/XMLSchema#unsignedInt">
900</xsp:maxInclusive>

</rdfs:Datatype>
</rdfs:range>

</owl:DatatypeProperty>

The domain of “CaveNo” is the class “File”. The range of “CaveNo” is restricted
from 1 to 900. Then the property can be transformed into an axis. Its coordinates are
the elements within the property range. The resources and their property values are
described as follows.

 Transformation from OWL Description to Resource Space Model 15

<BMP rdf: ID="instance_0001">
 <CaveNo>305</CaveNo>
 ……
 </BMP>
 <TXT rdf:ID="instance_0011">
 <CaveNo>220</CaveNo>
 ……
</TXT>
<AVI rdf: ID="instance_0021">
 <CaveNo>530</CaveNo>
……
</AVI>

The values of “instance_0001”, “instance_0011” and “instance_0021” are 305, 220
and 530 respectively.

Fig. 7. The axis transformed by datatype property CaveNo

Fig. 7 is the axis named after the property “CaveNo”. Its coordinates include all the
cave numbers in Dunhuang from 1 to 900. A resource’s coordinate on this axis is its
property value. The coordinate of “instance_0001” on this axis is 305. So a datatype
property can be transformed into a data type axis.

In OWL, an object property is a relation between two objects and declared by “Ob-
jectProperty”. An object property can be transformed into a homonymous axis, called
object axis. Its coordinates consist of the ancestor classes of elements within the prop-
erty’s range and they are usually in inheritance hierarchy. A resource’s coordinate on
object axis is composed of the ancestor classes of its property’s value. All the ele-
ments within the property’s range, with their ancestor classes, form an inheritance
hierarchy. The procedure of creating object axis is similar to that of creating inheri-
tance axis. Algorithm 1 and algorithm 2 are also used to get a directed tree or trees.
The output tree structure is converted into coordinates on object axis. For example, an
object property “Content” is defined in Dunhuang OWL file as follows:

<owl:ObjectProperty rdf:ID="Content">
 <rdfs:domain rdf:resource="File"/>
 <rdfs:range rdf:resource="ContentClass"/>
</owl:ObjectProperty>

“Content” describes the content represented by Dunhuang resources. Its domain is
“File” class and its range is “ContentClass”. The values of resources on this property
are described as follows:

CaveNo

instance_0001 instance_0011 instance_0021

(Datatype axis)

…
900 530

… …
1 220 305

…

16 H. Zhuge et al.

<BMP rdf:ID="instance_0001">
<Content rdf:resource="cave_305"/>
…

 </BMP>
<TXT rdf:ID="instance_0011">

<Content rdf:resource="story_1"/>
…

</TXT>
<AVI rdf:ID="instance_0021">

<Content rdf:resource="statue_530_2"/>
…

</AVI>

The range of this property is declared as class “ContentClass”. Its subclasses are
“painting”, “statue” and “architecture”. They also have their own subclasses, such as
“flyer”, “story”, “separate”, “attached” and “cave”. “story_1”, “statue_530_2” and
“cave_305” are the instances of “story”, “separate” and “cave” respectively. The
values of resource “instance_0001”, “instance_0011” and “instance_0021” of prop-
erty "Content" are “cave_305”, “story_1” and “statue_530_2” respectively. The in-
heritance hierarchy of "ContentClass" is given in Fig. 8.

Fig. 8. The inheritance hierarchy of class “ContentClass” and the values of resources. Here the
solid and dashed rectangles indicate classes and instances respectively. The solid arrows indi-
cate the inheritance relations.

Based on the structure, an object axis named “Content” is created and shown in
Fig.9. “ContentClass” is not transformed into a coordinate because there is only one
element at the top level. The coordinates of “instance_0001”, “instance_0011” and
“instance_0021” are “architecture.cave”, “painting.story” and “statue.separate”
respectively.

Property value

painting statue

ContentClass

architecture

separatestory cave flyer attached

story_1 cave_305 statue_530_2

instance_0011.Content instance_0001.Content instance_0021.Content

 Transformation from OWL Description to Resource Space Model 17

flyer

statue
Content

painting

story separate attached cave

architecture

instance_0021 instance_0011 instance_0001

(Object axis)

Fig. 9. Object axis derived from object property Content

In fact, not any property of ancestor classes in OWL should be transformed into a
property axis in OWL-based resource space. For example, every Dunhuang resource
has a property “NAME”. Suppose that “NAME” is converted into an axis “NAME”.
Then each coordinate on it can only identify one resource if name duplication is pro-
hibited. Axes generated from this kind of properties hardly classify resources effi-
ciently. It is not an easy job to judge if a property should be transformed into an axis
because it depends on the classification semantics represented by the property. It may
need user’s analysis and choice. The ratio of resource number to coordinate number
on the axis can be used as a referenced principle: if the ratio is close to 1, the property
should not be transformed.

4.5 Combination of Axes and Resources into Resource Space

Resources and axes derived from OWL are combined to form a coordinate system.
Every resource has a location determined by their ancestor classes and property’s
values in this coordinate system. They are inserted into corresponding points in the
space. A point in the space uniquely represents a set of resources. From the defini-
tion of resource space [16], this coordinate system constitutes a resource space. The
structure of the Dunhuang OWL-based resource space is shown in Fig. 10. For
simplification, only the coordinates on one layer in the coordinate hierarchy are
shown.

There are three axes named “Format”, “Content” and “CaveNo” respectively. The
“Format” axis is the inheritance axis derived from the inheritance hierarchy of re-
sources. The “CaveNo” is a datatype axis and directly comes from the homonymous
datatype property. The object axis “Content” is transformed from the same name
object property. Every resource in the space is specified by a tuple of coordinates. For
instance, the resource "instance_0001" corresponds to the point (architecture, image,
305). That means the resource is an image file and describes the architecture of the
305th cave.

The created resource space includes an inheritance axis and several property axes,
which are transformed from the inheritance hierarchy and properties of resources
respectively. The resources are derived from individuals and inserted into the resource
space according to their ancestor classes and property values.

18 H. Zhuge et al.

statue

CaveNo

instance_0001(architecture, image, 305)

painting architecture

instance_0011 (painting, document, 220)

instance_0021 (statue, video, 530)

Content

Format

image

530

220

305

audio

video

document

Fig. 10. The simplified resource space derived from the Dunhuang OWL file

5 Analysis of Normal Forms

Normal forms guarantee the correctness of operations on RSM [17, 20]. Normal
forms of the resource space generated from OWL file are important for their success-
ful application. Here we assume that the OWL file is well-defined (i.e., the file can
represent domain knowledge correctly and clearly) so that the resource space can
represent correct classification semantics. The coordinates on an axis can be hierar-
chical, but usually the coordinates at the same level can satisfy certain demand of
application. The hierarchical coordinates can be mapped into flat coordinates by only
projecting the same level coordinates onto the axis. So here only considers the flat
case for simplification.

5.1 The First Normal Form

The first-normal-form (1NF) of resource space requires that there is no name duplica-
tion between coordinates at any axis. The 1NF can be easily checked by comparing all
coordinates on one axis. The unqualified resource spaces can be upgraded to 1NF
after combining the duplicate coordinates into one and the corresponding resources
into one set.

A well-defined OWL file does not contain duplicated classes, instances and prop-
erty values. So the coordinates consisting of classes, instances and property values at
any axis should not be duplicated. Hence the OWL-based resource space satis-
fies 1NF.

 Transformation from OWL Description to Resource Space Model 19

5.2 The Second Normal Form

The second-normal-form (2NF) of a resource space is a 1NF, and for any axis, any
two coordinates are independent from each other. The 2NF avoids implicit coordinate
duplication, and prevents one coordinate from semantically depending on another. In
the application, the implicit duplication and semantic dependence are concerned with
the domain knowledge. Here the semantic independence means that a coordinate is
not the synonym, abstract concept, specific concept, instance or quasi-synonym of
another coordinate.

Since the synonymic classes, properties and individuals are already combined dur-
ing preprocessing, there are no synonymic coordinates on the inheritance axis and
property axes. In a well-defined OWL file, the abstract concept of a coordinate should
be declared as its ancestor class. Because the hierarchical structure of coordinates is
based on inheritance relations, the abstract concept and the coordinates are at different
levels. So there is no abstract concept of a coordinate at the same level. The specific
concept and instance of a coordinate should be its subclass and instance respectively.
They are also at different levels in the hierarchical structure of coordinates. In order to
avoid semantic confusions, the coordinates at different levels should not be used at
the same time. During the procedure of creating inheritance axis, the multi-inheritance
problem is solved. So every resource has a certain value on axis. The quasi-
synonymic classes do not influence the resource classification. On the datatype axis,
the coordinates are one type of values or their classification. The quasi-synonymic
values cannot influence the resource classification because a resource’s coordinate is
a certain value. On an object axis, the resource coordinates are ancestor classes of
their property values. The coordinates on object axis are similar to those on the inheri-
tance axis. They can avoid classification confusion of resources. So there are no influ-
ential quasi-synonyms on any axis.

The 2NF avoids the intersection of resource sets on different coordinates. In the re-
source space created from a well-defined OWL file, the resources are classified
clearly by the coordinates on any axis. So the coordinates on any axis are semantically
independent. Generally, the classification confusion on axis implies that the OWL file
contains some confusing description and it should be modified to prevent semantic
confusion. In other words, a well-defined OWL file can be directly transformed into a
resource space satisfying the 2NF.

5.3 The Third Normal Form

A 2NF resource space is 3NF if any two axes are orthogonal with each other [16].
From the generation process, we know that an OWL-based resource space contains
one inheritance axis and several property axes. Then, we have the following lemmas:

Lemma 1. In the OWL-based resource space, any two axes are orthogonal, if and
only if: (1) the inheritance axis is orthogonal to any property axes, and (2) any two
property axes are orthogonal.

Lemma 2. The orthogonality between two axes is transitive, that is, if X⊥X’ and X
⊥X’’, then X’⊥X’’ [17].

Lemma 3. In the OWL-based resource space, if the inheritance axis is orthogonal to
any property axes, any two property axes are orthogonal with each other.

20 H. Zhuge et al.

Proof. Let the inheritance axis be XI, and, X1

P and X2

P be two arbitrary property axes.
If the inheritance axis is orthogonal with any property axis, XI

⊥X1
P and XI

⊥X2
P

hold. Because XI
⊥X1

P ⇔ X1
P
⊥XI and according to Lemma 2, X1

P
⊥X2

P holds, i.e.,
two property axes are orthogonal. �

Theorem 1. If the OWL-based resource space is in 2NF and the inheritance axis is
orthogonal with any property axes, the resource space satisfies 3NF.

Proof. From Lemma 3, if the inheritance axis is orthogonal with any property axes,
we have: any two property axes are orthogonal.

From Lemma 1, we have: any two axes are orthogonal in the OWL-based re-
source space.
According to the definition of 3NF, the resource space is in 3NF. �

Lemma 4. For two axes Xi and Xj in a resource space, Xj⊥Xi ⇔ R(Xj) = R(Xi) holds
[20].

Theorem 2. In a 2NF OWL-based resource space, its inheritance axis is denoted as
XI. If R(XI) = R(XP) holds for any property axis XP, the resource space satisfies 3NF.

Proof. From Lemma 4, R(XI) = R(XP) XI
⊥XP .

Then the inheritance axis is orthogonal with any property axis.
According to Theorem 1, the resource space satisfies 3NF. �

Lemma 5. If a resource r owns the property P, then r can be represented by the prop-
erty axis XP transformed from P, that is, r ∈ R(XP).

Proof. According to the generation process of property axis, the coordinates on XP
may consist of three kinds of elements: all elements within the range, a classi-
fication of all elements in the range or the ancestor classes of all the elements
within the range. Because r owns the property P, so the P’s value of r is within
the range, r has a coordinate on XP. So r ∈ R(XP) holds. �

Theorem 3. If every property axis of the 2NF resource space RS is transformed from
the common property (the property owned by all the ancestor classes of resources),
the resource space RS satisfies 3NF.

Proof. Let ER be the universal resources to be organized by RS, XI be the inheritance
axis and XP be an arbitrary property axis. We can get R(XI)⊆ ER and R(XP) ⊆ ER.
For any resource r, we have r ∈ ER.
(1) Since r is an instance of a class, r can find its ancestor class on XI.
Then r ∈ R(XI) and ER⊆ R(XI) hold.
From R(XI)⊆ ER, we can get R(XI)＝ER.
(2) Since r is an instance of a class, it has the same properties of its ancestor
class. P is a common property and owned by every ancestor class.
Then, we have: r must own P as its property.
From Lemma 5, r ∈ R(XP) holds.
Because r ∈ ER holds, we can get ER⊆ R(XP).

 Transformation from OWL Description to Resource Space Model 21

And from R(XP) ⊆ ER, then we have: R(XP) = ER holds.
From (1) and (2), we get R(XI) = R(XP).
Then according to Theorem 2, RS satisfies 3NF.

From Theorem 3, we know that if every axis in OWL-based resource space is created
by a common property, then the resource space satisfies 3NF. Therefore the algorithm
using this condition can generate a 3NF resource space.

6 Strategy and Discussion

Integration of OWL files developed by team members is very important in ontology
engineering. Assume that OWL-file is the integration of OWL-file1 and OWL-file2
denoted as OWL-file=OWL-file1∪ OWL-file2, and that RS, RS1 and RS2 are re-
source spaces created from OWL-file, OWL-file1 and OWL-file2 respectively. If the
integration operation ∪ is defined according to the union of graphs, then it does not
reduce resources, properties and classes, therefore RS1 and RS2 are the subspaces of
RS (i.e., all resources, axes and coordinates in RS1 or in RS2 are also in RS). If there
exist common axes between RS1 and RS2, then RS1 and RS2 can be integrated by join
operation: RS1⋅RS2 [16, 17]. Since join operation does not increase any new axis,
coordinate and resource, RS1⋅RS2 is also a subspace of RS. This tells us a strategy of
transformation from OWL into resource space: Integrate OWL files rather than re-
source spaces, that is, select the integrated OWL file for transformation to reserve
more semantics rather than select the individual OWL files for transformation and
then integrate the created resource spaces.

The RSM can accurately locate resources and has a firm theoretical basis for ensur-
ing the correctness of resource operations. A two-dimensional or three-dimensional
resource space can be easily displayed, manipulated and understood in mental ab-
straction world. Higher-dimensional resource space needs to be split into several
lower dimensional resource spaces by the split operation for display [16]. But its
implementation depends on the underlying structure in the machine world.

The OWL is being widely accepted by researchers and ontology developers. There
will be rich OWL-based ontologies, which are the basis of automatically generating
the RSM. The OWL is not designed for human to read so it is hard for human to
maintain it. The OWL needs to develop its theoretical basis.

Integrating OWL with RSM can obtain advantages and overcome shortcomings of
both. One strategy is to place the RSM at the high level for efficient locating and
effective management of resources and place the OWL description at the low level to
provide ontology support. The underlying ontology supports the normalization of the
RSM [16]. The join and merge operations of RSM support the management of multi-
ple resource spaces which could be generated from the same OWL file.

7 Conclusion

This paper investigates the semantics of the interconnection environment, and pro-
poses an approach to automatically create a resource space from a given OWL file,
and analyzes the normal forms of the OWL-based resource space. This approach

22 H. Zhuge et al.

can make use of existing ontology and relieve the dependence on developers’
knowledge. The integration of RSM and OWL can obtain advantages of both.
Strategies for transformation and integration are given. Ongoing work is the trans-
formation between OWL and other forms of semantics like the semantic link net-
work SLN [17].

Acknowledgement

The authors thank all team members of China Knowledge Grid Research Group
(http://www.knowledgegrid.net) for their help and cooperation.

References

1. Assem, M., Menken, M. R., Schreiber, G., Wielemaker, J., Wielinga, B. J.: A Method for
Converting Thesauri to RDF/OWL, International Semantic Web Conference, Hiroshima,
Japan, (2004) 17-31.

2. Batini, C., Ceri, S., Navathe, S. B.: Conceptual Database Design: an Entity-Relationship
Approach, Benjamin and Cummings Publ. Co., Menlo Park, California, 1992.

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 284(5)
(2001) 34-43

4. Chen, P. P.: The Entity-Relationship Model, Towards a Unified View of Data, ACM-
Transactions on Database Systems, 1 (1) (1976) 9-36.

5. Embley, D. W.: Object Database Development Concepts and Principles, Addison Wesley,
1997.

6. Gaševic, D., Djuric, D., Devedžic, V., Damjanovic, V.: Converting UML to OWL Ontolo-
gies, Proceedings of the 13th International World Wide Web Conference, NY, USA,
(2004) 488-489.

7. Grønmo, R., Jaeger, M. C., Hoff, H.: Transformations between UML and OWL-S, the
European Conference on Model Driven Architecture Foundations and Applications
(ECMDA-FA), Springer-Verlag, Nuremberg, Germany, November, 2005.

8. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications, Knowledge
Acquisition, 5 (2) (1993) 199-220.

9. Hepp, M.: A Methodology for Deriving OWL Ontologies from Products and Services
Categorization Standards, Proceedings of the 13th European Conference on Information
Systems (ECIS2005), Regensburg, Germany, (2005), 1-12.

10. Kaljurand, K.: From ACE to OWL and from OWL to ACE, The third REWERSE annual
meeting, Munich, March, 2006.

11. Marca, D., McGowan, C.: SADT: Structured Analysis and Design Techniques, McGraw-
Hill, 1987.

12. Motik, B., Vrandecic, D., Hitzler, P., Sure, Y., Studer, R.: dlpconvert - Converting OWL
DLP Statements to Logic Programs, System Demo at the 2nd European Semantic Web
Conference, Iraklion, Greece, May, 2005.

13. Ng, P. A.: Further Analysis of the Entity-Relationship Approach to Database Design,
IEEE Transaction on Software Engineer, 7(1) (1981) 85-99.

14. Neches, R., Fikes, R. E., Gruber, T. R., Patil, R., Senator, T., Swartout, W.: Enabling
Technology for Knowledge Sharing, AI Magazine, 12 (3) (1991) 36-56.

15. Teorey, T., Yang, D., Fry, J.: A Logical Design Methodology for Relational Databases Us-
ing the Extended Entity-Relationship Model, ACM Computing Surveys, 18 (2), June, 1986.

 Transformation from OWL Description to Resource Space Model 23

16. Zhuge, H.: Resource Space Grid: Model, Method and Platform, Concurrency and Compu-
tation: Practice and Experience, 16 (14) (2004) 1385-1413

17. Zhuge, H.: The Knowledge Grid, World Scientific, Singapore (2004)
18. Zhuge, H.: Resource Space Model, Its Design Method and Applications, Journal of Sys-

tems and Software, 72 (1) (2004) 71-81
19. Zhuge, H., Xing, Y.: Integrity Theory for Resource Space Model and Its Application, Key-

note, WAIM2005, LNCS 3739, (2005) 8-24
20. Zhuge, H., Yao, E., Xing, Y., Liu, J.: Extended Normal Form Theory of Resource Space

Model, Future Generation Computer Systems, 21 (1) (2005) 189-198.
21. Zhuge, H.: The Open and Autonomous Interconnection Semantics, Keynote at 8th Interna-

tional Conference on Electronic Commerce, August 14-16, 2006, Fredericton, New Bruns-
wick, Canada.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

