
Workflow- and agent-based cognitive flow management
for distributed team Cooperation

Hai Zhuge*

Knowledge Grid Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100080, PR China

Received 25 June 2001; received in revised form 5 January 2002; accepted 24 May 2002

Abstract

Human cognition and work processes are two inseparable parts of human problem solving, however, the cognitive process is

neglected in most research on knowledge-intensive team Cooperation. This paper presents an approach for modelling these two

parts of the process for use by a distributed co-operative team. We define a new notion of cognitive flow to reflect the dynamic

cognition processes of a team. The mechanism is built to model, control and manage the cognitive flow process. A solution for

applying this approach to a distributed team during software development is presented. The experiment showed that the

approach can improve the problem solving ability of a team.

2002 Elsevier Science B.V. All rights reserved.

Keywords: Agent; Cognition; Cooperation; Knowledge management; Teamwork; Workflow

1. Introduction

People usually solve large-scale problems as a team

where all the members make a co-operative effort to

achieve a common goal. The process, however, may

need the team members to be decentralised in order to

make use of site-specific resources. Team members

then must Cooperate in either a loosely coupled way,

like a research or a robot football team [30], or a

tightly coupled way, like a production line, depending

on the application requirements.

Knowledge management plays an important role in

promoting the team’s work effectiveness. It concerns

the management aspect (e.g. the organisational learn-

ing, organisational behaviour and organisational cul-

ture) and technical support [3,4]. The scope of this

paper is on tightly coupled Cooperation teams and

their technical support.

Workflow, the automation of a business process in

whole or part, is a useful tool for modelling and

managing a business process. It can enforce tightly

coupled co-operation between team members accord-

ing to a pre-defined logical process between activities

(tasks). A workflow management system (WfMS) is a

system that defines, manages and executes workflow

specification through the execution of software whose

order of execution is driven by a formal representation

of the workflow logic [15,16,31,32]. The workflow

establishes the logical execution ordering between

team members’ activities, and therefore, it helps

define the intra-enterprise or inter-enterprise business

process [27]. Time modelling, reusability, exception

handling, distribution, adaptability and formal model-

ling of workflow have been discussed in several

articles (e.g. [5,20,21,24,35]) and these features,

Information & Management 40 (2003) 419–429

* Fax: þ86-10-62567724.

E-mail address: zhuge@ict.ac.cn (H. Zhuge).

0378-7206/02/$ – see front matter # 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 8 - 7 2 0 6 (0 2) 0 0 0 6 1 - 7

together with resource-sharing, should be incorpo-

rated into the current WfMS to provide better support

to the distributed team.

The implementation of every task in a workflow is

an interaction between team members and the support

environment. In knowledge-intensive teamwork, the

members’ cognitive abilities and their Cooperation

determine the efficiency and quality of their perform-

ing the team task. Thus, the team members actually

cooperate at three levels, from low to high: work

Cooperation, resource (information, knowledge and

services) sharing, and cognitive Cooperation. At the

work Cooperation level, team members implement

their tasks according to the team’s workflow defini-

tion. At the information sharing level, team members

communicate to share information based on a pre-

defined sharing paradigm. At the cognitive Cooperation

level, team members learn from each other, make

abstractions, make across-problem analogies, and use

past experience and skills to solve new problems

[6,7,33]. The current workflow model and WfMS do

not include such a cooperation level.

Internet techniques can help a globally distributed

team cooperate, but team members are likely to be

changed more frequently. Those members who leave

take away information, knowledge and experience that

they acquired, and the replacement team members

have to spend time learning the co-operative rules

and problem solving methods and accumulating the

information resources and experience from scratch.

This addition will usually slow down the work of the

team [2].

Another challenge is the contradiction between

globalisation and co-ordination. A globally distributed

team has the advantage of making use of global

resources, but the complexity of the co-ordination

as well as the costs of communication and transporting

products will also increase. The co-ordination

involves, task planning including such considerations

as time difference and establishing a mutual-under-

standing. These require a distributed team develop-

ment environment to support cognitive Cooperation as

well as work Cooperation.

Similar problems apply in multi-agent Cooperation

for distributed artificial intelligence [1,8,9,14,17,29]

and decision-making in group decision support sys-

tems [10], as well as a collaborative knowledge base

[12] and collaborative design [23]. They focus on the

computational principles, the operational models, and

the support systems for interaction and co-ordination

between team members, and the application of these

principles and models. The dynamic decision, Coop-

eration, and creative user interfaces were investigated

in [28,34]. However, previous research has neglected

the evolution of the team’s cognitive ability during

Cooperation and the management of this evolution to

enhance the problem solving ability of the team.

This paper proposes an approach that aids the cog-

nitive Cooperation in a workflow-based team so that its

work efficiency and problem solving ability can be

enhanced. Consequently, two issues need to be inves-

tigated: (1) the process modelling and the evolution

process of the team’s cognitive information and (2) the

management mechanism to help in Cooperation.

2. Agent-based workflow: modelling active
human Cooperation

Conventional workflow models are activity-based.

All the activities (tasks) and their order of execution

are pre-defined at build-time. Any performer has to

follow these activities into the order defined by the

work-list of the related WfMS. However, this model is

not in line with real people-centred team works

[18,39] and performers’ active characteristics are

not considered. To overcome such shortcomings, we

incorporate agents into the traditional model to form

an agent-based workflow model. This consists of a set

of agents, a set of inter-agent workflows, and a set of

intra-agent workflows for every agent. The process

semantics of both the inter-agent workflow and the

intra-agent workflow are defined by the traditional

workflow semantics. Every agent represents one or

more team member, and it can perform the activities in

the inter-agent workflow according to the agent’s

internal work process definition.

An actively co-operative team can be modelled by a

set of agents, a team manager, and a set of pre-defined

inter-agent workflows (denoted as InterAgentWFS)

corresponding to different team tasks, represented as

AgentTeam ¼ hfAgent1, . . ., Agentng, TeamManager,

InterAgentWFSi. The team manager is also an agent

who is responsible for the membership management at

the build-time of the team. When receiving a new task,

the team manager is responsible for planning the new

420 H. Zhuge / Information & Management 40 (2003) 419–429

workflow that implements the new team-task, deploy-

ing sub-tasks to the member agents, and monitoring

the execution of the inter-agent workflow in run-time.

The type of a team-task T is implemented through the

co-operative work of the member agents according to

the corresponding team workflow definition, repre-

sented as AgentTeamðTÞ ¼ hfAgent1, . . ., Agentng,

InterAgentWF(T)i, i.e. the inter-agent workflow varies

with the type of the task received. The inter-agent

workflow concerns multiple flow types, such as con-

trol flow, data flow, and material flow between agents.

These should be reflected in the workflow definition

database of the WfMS in order to manage multiple

types of flows. During the execution of the inter-agent

workflow, some sequential activities can be simulta-

neously active in the same time period (e.g. the

activities in the production line), and this forms an

active activity segment. In this case, the WfMS should

be able to monitor the propagation of the active

activity segment.

Every agent performs its activities to accomplish its

task t (a part of the team task T) according to its intra-

agent workflow, i.e. AgentiðtiÞ ¼ hActivitySet(ti), Intra-

agent, WF(ti)i. The conventional workflow model does

not provide such a workflow to the activity performer.

The intra-agent workflow provides flexibility in per-

forming the activities on the work-list. The activities of

different agents concern different inter-agent work-

flow. The intra-agent workflow only affects control

flows like the traditional workflow. Agents’ activities

are executed according to the control flow and the

condition defined by the intra-agent workflows. Any

continuous activities may be regarded as a single

atomic activity in the intra-agent workflow. Any con-

straint on the intra-agent workflow progress, if any, is

initiated by the inter-agent workflow. The start of an

activity depends on the execution order and the status

of the inter-agent workflow in which it participates.

The agent in this model has a communication inter-

face, a reasoning mechanism, a set of event condition

action (ECA) rules, and an intra-agent workflow. It

receives information (demands) through its input

interface. The output is a set of behaviours related

to the input and results from its reasoning mechanism,

which executes with the ECA-rule set in simulating

the active activities such as negotiation, decision, and

exception handling. The condition and activity in the

ECA rules include a time constraint. The member

agents can be managed in either a loosely or a tightly

coupled way. In the loosely coupled way, each agent is

autonomous and can serve more than one team. Each

agent can plan to perform its tasks in an optimal way.

In the tightly coupled way, each member agent can

only belong to one team and perform the assigned

team task. The team is authoritatively managed, only

the team manager has the right to communicate with

other teams. Besides participating in the inter-agent

and the intra-agent workflows, agents can further

cooperate at the cognitive level.

3. Cognitive flow in a co-operative team

Cognitive flow occurs during the passing of team

members’ cognitive information generated during the

knowledge-intensive Cooperation process through a

definite media. It records the cognitive information of

the current working team member, passes a team

member’s cognitive information to another team

member (receiver) according to a definite process

logic, shares its content with the receiver, and accu-

mulates the receiver’s cognitive information. The

complete cognitive flow passing through all the team

members (human or agent) during a team Cooperation

process constitutes a cognitive flow network (CFN).

Every node of the CFN represents the generation of a

team member’s cognitive information during the team

member’s task implementation process. The output of

each cognitive node is a flow that depends on the team

member’s cognitive ability and his or her input (i.e. the

experience of the relevant team member). We call a

cognitive node active only when the corresponding

team member is working on it, otherwise it is inactive.

An inactive cognitive node is re-activated when the

corresponding team member starts working on it

according to the process logic of the CFN. The

propagation of the active node(s) in a CFN can keep

pace with the execution of the corresponding inter-

agent workflow process.

The relationship between the cognitive flow and

the cognitive node of a CFN can be defined by

referring to the workflow network. Fig. 1 shows

the constitution of the input and output cognitive

flows under the context of the agent-based workflow.

CNi denotes the internal cognitive process of an agent

participating in an inter-agent workflow. Its input

H. Zhuge / Information & Management 40 (2003) 419–429 421

cognitive flow is the ‘union’ of the flows received from

its predecessors, it is represented as: CFinðCNiÞ ¼
CFoutðCNp1Þ [

 [CFoutðCNpnÞ.

The cognitive output of CNi (i.e. CFout(CNi)) is

generated by the corresponding team member during

his or her work period. The cognitive flow must accu-

mulate the cognitive information generated by the

previous nodes, so the final output of CNi, is the ‘union’

of the input CFin(NCI) and the output Clout(NCI), i.e.

CFoutðCNiÞ0 ¼ CFoutðCNiÞ [CFinðCNiÞ.
For a newly created CFN, the cognitive input of the

first cognitive node CFin(CN0) will be initialised by

the co-operation rules of the development team. After

the first run of the CFN, the output of the end cognitive

node of the last run will be rolled back as the input of

the first cognitive node of the current run of the CFN.

The union of cognitive flows can be a simple

merging, a summarisation, or a classification of all

relevant flows. A team consisting of members with

different knowledge structures will produce different

cognitive co-operation effects, so team members

should be well organised, e.g. into a hierarchical

structure where people at a high level or high rank

are responsible for solving more general problems,

and people at the same level can share cognitive

information more effectively and easily.

There are four major differences between cognitive

flow and the workflow. First, cognitive flow reflects the

cognitive Cooperation between team members, while

workflow only reflects the work Cooperation in the

business process. Second, the cognitive flow content is

generated from the team members’ task implementa-

tion process during the execution of the workflow

process; it cannot be pre-designed, but the workflow

reflects the business process and may be pre-designed

by its designer. Third, the cognitive flow carries the

cognitive information of the team, while the workflow

reflects either the data dependence relationship or the

logical execution dependence relationship between

task implementation activities. Fourth, the cognitive

flow will increase its content during its execution,

while workflow just reflects the control of the activities.

Fig. 1. Relationship between cognitive flow, cognitive node, intra-agent workflow, inter-agent workflow and participants.

422 H. Zhuge / Information & Management 40 (2003) 419–429

The representation of a cognitive flow should have

four basic information processing capabilities:

(1) Accumulation: it should be able to accumulate

the knowledge of all the team members during

the problem solving process and retain their

knowledge generated during the solving of

previous problems.

(2) Classification: it should classify the knowledge in

different problems and with different team

members. This classification reflects the human

cognitive information refinement ability.

(3) Abstraction: it should reflect the cognitive

information at different abstraction levels. With

abstraction, human can simplify a complex

problem and solve it first at the high abstraction

level, then mapping it onto low levels.

(4) Analogy: it should establish analogy associations

between the related contents. With analogy,

people can solve a new problem by using their

prior problem solving experience.

All the team members are both writers and readers

of the flow content, so the content description of the

cognitive flow should be understandable by all mem-

bers. The implementation of the cognitive flow con-

sists of two levels: (1) the constrained natural language

for communication between the human team members

and their agents and (2) the communication language

and paradigm between agents. Establishing creativity

in the agents’ interfaces is very helpful in promoting

Cooperation between human and software agents.

Since different agents may have different software

support systems, the cognitive flow should be based on

a common information exchange language. Several

languages for this communication have been sug-

gested [13,19]. The Semantic Web (http://www.se-

manticweb.org) enables the cognitive flow to be

expressed and transmitted across the Internet.

4. Cognitive flow management

A team’s problem solving ability varies with the

knowledge structures of its members. A candidate

should be evaluated according to the following four

aspects when selecting him or her as a member.

(1) Specialisation knowledge of the problem field

(including basic concept, theory, method, experi-

ence and skill): Evaluation can be carried out

by examining and reviewing the candidate’s

experience.

(2) Knowledge of related fields: This is the basis of

making associations when solving problems.

Evaluation can be carried out by reviewing the

candidate’s experience.

(3) Creativity: This evaluation is for determining

whether the candidate can make use of past experi-

ence. Evaluation can be carried out by assigning the

candidate a set of pre-designed problems beyond

his or her major specialised knowledge area.

(4) Co-operative spirit: This can be tested and

evaluated by asking the candidate a set of well-

designed questions on the area.

A team’s Cooperation degree can be measured by

assessing the following factors:

(1) the match between the special knowledge

required for solving the problem and the team’s

overall special knowledge;

(2) the degree of similarity between team members’

knowledge;

(3) the average creativity and co-operative spirit of

the team members.

Good coverage of related fields can improve the

team’s problem solving ability and help members learn

from one another. Once a team is formed, its knowl-

edge structure will evolve continuously, because every

member will study new knowledge and will change

during the problem solving process. The evaluation of

the team’s degree of Cooperation is dynamic, so the

evaluation approach reported in [38] can be used.

Each team member is responsible for not only the

generation of the cognitive flow but also its general-

isation. The generalisation of each team member’s

cognitive information depends on the following three

types of input:

1. Cognitive information generated while performing

the current task.

2. Cognitive flow output of the direct predecessor(s).

The input of the first cognitive node can be the roll

back cognitive output of the end cognitive node

of the last run of the CFN or the initial input

when the first run of the CFN. The initial input

reflects the cognitive status of the team, which is

H. Zhuge / Information & Management 40 (2003) 419–429 423

HTTP://WWW.SEMANTICWEB.ORG
HTTP://WWW.SEMANTICWEB.ORG

accumulated through learning from each other and

from typical problem solving examples.

3. Generalised cognitive flow coming from the direct

predecessor(s). The generalised cognitive input of

the first team member will be the generalised

cognitive output of the end cognitive node of the

last run or the pre-designed initial input at the first

run. The generalised cognitive flow can extend its

problem solving region. It can also refine the

cognitive flow to avoid unlimited expansion of the

cognitive flow content.

Before accomplishing the current problem solving

task, the output cognitive flow of the end cognitive node

of a CFN should be saved in a team cognitive flow

repository for reference while solving future problems.

A team cognitive flow repository is a set of cognitive

flow frames with the saved date. The team members can

query the required cognitive information according to

various versions: the problem, the member, the revi-

sion, and the date on which the problem was solved.

The out-of-date content in the repository will be

updated after the termination of the problem solving

process. The team cognitive flow repository is located

at the site where the team-ware could provide support.

With the team cognitive flow repository and the

member cognitive flow repository, a development

team can adapt to a change of its members because

the related cognitive information of the members who

leave are recorded in the team members’ cognitive

flow repository. A new team member can become

experienced enough to play the role of the absent

member by learning the cognitive information from

the individual and team repository.

Three Internet-based communication approaches

like the e-mail-based, blackboard-based, flow-based

and hybrid approaches can be used to implement the

cognitive flow [36]. Recently, we have proposed an

Internet-based knowledge grid platform to realise

global knowledge sharing [41].

5. A case study: cognitive Cooperation in
distributed team software development

5.1. Case description and related work

Distributed team software development is a kind of

paradigm that focuses on work co-operation and

resource sharing between distributed team members.

Such a development can make use of resources at

different sites. The team should be supported by a

distributed and across-platform computing environ-

ment. At the system level, the team environment should

support version control, workspace and release man-

agement, build management, process management, etc.

The first generation environments are file-based

version control tools (e.g. Sun Microsystems Team-

Ware and Microsoft Visual SourceSafe). The second-

generation environments shift the focus from the file to

the project level. They employed a project repository

that supports parallel development, team co-ordina-

tion, and process management. Besides sharing codes

and documents, it should further allow team members

to share technical skills (establishment of IT skills

standards has been proposed [22]), to learn from each

other, etc.

Reasons for incorporating cognitive flow include:

(1) The Software development process is cognitive:

Software development is a knowledge-intensive

human activity process, and software development

can be improved by recognising related knowl-

edge structures [25]. Team members can improve

their problem solving ability during the develop-

ment process; they can do this by cognitive co-

operation between the team members.

(2) Understand and utilise dynamic cognitive Co-

operation during development: Team members’

cognitive information (knowledge, experience,

methods, strategy, and skills) about the software

development is generated and accumulated dur-

ing the development process; cognitive co-

operation between them cannot be pre-designed.

(3) A distributed team requires an effective and low

cost communication method: Ordered commu-

nication can reduce the communication cost and

better reflect the real work process in project

development.

(4) A development team should be supported by a

way to collect and distribute experience: Each

team member should be able to use the

experience of other team members and the

overall experience accumulated during previous

project development efforts. With cognitive flow,

the team members can avoid redundant work and

adapt to any change of membership.

424 H. Zhuge / Information & Management 40 (2003) 419–429

(5) Different cultural backgrounds of the geographi-

cally distributed team members require high-level

Cooperation: Direct communication between team

members with different cultural backgrounds will

be more difficult but a high-level cognitive

Cooperation mechanism can help cross this barrier.

To incorporate cognitive flow into the management

of software development can meet these requirements.

The cognitive flow content only includes a general

description of the cognitive information that can be

further refined and stored in a central repository (i.e.

the team repository).

5.2. Solution description

An interactive platform for collaboration and the

agent-based software engineering were discussed in

[11,26]. Our intention was to provide an assistant

mechanism that could work with any development

environment to promote Cooperation between team

members. Our solution is to provide the development

team with a set of agents, each of which has an

individual cognitive repository and serves one devel-

oper. Every developer performs the team’s develop-

ment task according to pre-defined workflow under

time constraint. With the help of an agent, every

developer can input cognitive information into the

cognitive flow and get the relevant cognitive informa-

tion from the cognitive flow during the development

process. In simplification, we provide an automatic

control mechanism to distribute the control right to the

team members. The agent of every developer is mainly

responsible for performing six tasks:

(1) Collect the developer’s experience by recording

the problems encountered and the solutions made

during the development process, i.e. the agent

will learn from its host during this process. The

agent can only provide the developer with an

active window interface to accept the input

content of the flow frame.

(2) Summarise and generalise the collected experi-

ence (knowledge acquisition and mining).

(3) Communicate with other agents by using the

inter-agent common language (e.g. KQML or

CBL), e.g. assist its host to ask other team

members’ questions in their common language.

This can help cross the culture barrier.

(4) Learn experience from other agents. This enables

the agent to assist its host intelligently.

(5) Help to find the solution to the problem of the

developer.

(6) Teach new members after their recruitment. This

will help to retain the team’s ability.

(7) Assist a developer to maintain his or her

individual cognitive repository: generalising the

contents, establishing links between similar

contents, etc.

5.3. Cognitive flow in software development

In software development, the general cognitive flow

can be classified as the following levels:

(1) Concept level: It concerns domain concepts,

design concepts, and software concepts. Team

members can share these concepts at this level.

The semantic of a concept and the relationship

between concepts are described in ontology.

(2) Process level: Team members can share some

software processes they participate in.

(3) Code level: Here team members share their

programming skills. The content of this level is

the programming skills that result in a set of

problem–solution pairs.

(4) Component level: This reflects the cognitive

information about the components being devel-

oped by the team members; it can help team

members use the component (or reuse its sub-

components). This level has two items. The first

is the ‘category’ to which the component

belongs. It has a category name that defines the

component generalisation. The second item is the

‘dependent components and categories,’ which

enables the team members who want to use the

component to identify its dependent components.

It is a set of component and category name pairs.

The corresponding analogy link content points to

the similar component name and related versions.

(5) Method level: This allows team members to reuse

the problem solving method. The content of this

level is a set of problem–method pairs, where the

method can be either a set of general problem

solving steps or algorithms. The corresponding

analogy link points to similar problem–method

pairs with related versions and optional methods.

H. Zhuge / Information & Management 40 (2003) 419–429 425

(6) Rule level: This records the development and the

pre-designed cognitive co-operation rules. With

workflow execution, the development rules

become richer. The team members can then

share the development rules. Rules should be

generalised for supporting software development.

Co-operation rules define the Cooperation be-

tween team members. These rules are very useful

for new team members.

(7) Strategy and evaluation level: This reflects the

strategies made during the development process

and the evaluation of their application. It

provides a reference for the team members in

planning their strategies. The content is a set of

hsituation, strategy, evaluationi, where the eva-

luation is the degree of satisfaction of the

strategy. Such an evaluation can help later team

members avoid making unsuccessful choices

when a similar problem is faced. The analogy

link of this level points to the similar situation–

strategy pairs with the related versions and the

optional strategies to the same situation.

Reuse (or sharing) of cognitive information at

different levels can be complete, partial [37], or a

kind of heuristic that can help other team members

find a short cut to accomplish their tasks.

5.4. Experimental comparison

The purpose of this experiment was to examine the

relationship between cognitive Cooperation and pro-

blem solving ability in small teams. The experiment

concerns an instructor and two small teams: one (A)

works with the cognitive flow and workflow while

another (B) only works with the workflow. Team A has

the same number of members as B. The instructor was

responsible for determining the match degree between

the students’ specialisation and the assigned task (a

match can be obtained by selecting suitable students or

projects), checking the quality of task accomplish-

ment, and counting the duration of project develop-

ment. The first step was to compare the problem

solving abilities of the two teams. We used the time

duration (D) to solve a set of problems completely to

some satisfactory quality as a measure of the team’s

problem solving ability. The second step was to

compare the change of the problem solving abilities

of the two teams after solving the same set of pro-

blems.

Different members of a team will play different

roles when solving different problems. The matching

degree (denoted as MD, MD 2 ½0; 1�) between every

member’s problem solving ability and the role

required by the problem was an important factor that

affected the team’s problem solving ability. MD ¼ 0

and 1 represented ‘‘complete mismatch’’ and ‘‘com-

plete match’’, respectively. The larger MD means a

better match between the team member and the role of

the problem. The match degree of the team (MDT) is a

function (we used the average) of all the matches of its

members, such that MDT 2 ½0; 1�.
The experiment was carried out by assigning two

student-teams (A and B) with the same groups of

projects (i.e. projects 1–4, projects 5–8, and projects

9–12), and then recording the time to complete each

project. Each team had five student members, and

every member was responsible for developing a com-

ponent of the assigned project. The development

duration of a project was the sum of the duration

spent for task division, developing all the components,

and component composition. The experimental data of

the three groups of projects is shown in Table 1. The

following results were obtained:

Table 1

Experiment for comparing two student-team’s problem solving

abilities

Stage Project MDT D(A) (h) D(B) (h)

1 1 0.25 8.5 8.3

2 0. 5 6 6.5

3 0.75 5 5

4 1.0 4 4

Average 0.625 5.875 5.95

2 5 0.25 7 7

6 0.5 5.5 6

7 0.75 5 5

8 1.0 4 4

Average 0.625 5.375 5.5

3 9 0.25 6 6.5

10 0.5 5 5.5

11 0.75 4.5 5

12 1.0 3.5 4

Average 0.625 4.75 5.25

4 Total average 0.625 5.33 5.57

426 H. Zhuge / Information & Management 40 (2003) 419–429

(1) The larger MDT causes the shorter duration. The

team member with the smaller MD needs more

time to communicate with the other members

than with the bigger MD.

(2) D(A) varying range is larger than that of D(B)

with a change of MDT.

(3) D(B) is more stable than D(A) when developing

the first group of projects.

(4) D(A) becomes more stable and D(B) stays almost

unchanged when carrying out the second and the

third group of projects. This shows that team A

has learning ability.

(5) The total average data shows that D(A) is smaller

than D(B).

The problem solving abilities of team A and B can

be measured by 1/D(A) and 1/D(B), respectively, so

the problem solving ability of team A is stronger than

that of team B.

After finishing developing a new project, the knowl-

edge addition of any member of team A consists of the

knowledge: (1) learned from the development process;

(2) learned directly from the other team members; (3)

generated from the knowledge reasoning based on the

heuristic information obtained by communicating

with other members during the process. But the

knowledge addition of any team member of team B

after finishing the development of a new project only

has the first part of the knowledge available to team A.

If we give team B a period of time to allow its team

members to learn from each other after finishing the

project, team B can get the second part of the knowl-

edge, but the third part of knowledge is generated

during the development process, and it cannot be

obtained afterwards.

Problem solving ability consists of problem solving

knowledge (including basic knowledge, high-level

skills, systematic understandings, and inspiration

and creativity required by domain problem solving)

and the mechanism of using that knowledge. A co-

operating team’s problem solving ability could be

more than the simple sum of all the team members’

individual problem solving abilities. A part of the

team’s problem solving ability is generated during

the co-operative work process. A team member can

learn from his or her own work process, learn existing

knowledge from the other team members, and gen-

erate new knowledge and new approaches after obtain

some heuristic information from other team members.

This is why a well-organised co-operative team can

work better and wiser than a disorganised team. An

entire problem solving process should be managed at

two levels: (1) work, including task planning, resource

scheduling, and workflow management and (2) cog-

nitive, including the learning of the relevant problem

solving knowledge, skills, rules, methodologies, etc.

The scale of team members is another important

factor that affects the team’s problem solving ability.

Larger problems require larger teams. The cognitive

co-operation of a large team is more complex than that

of a small team. We only focused on small teams with

three to seven members. The experiment shows that

the problem solving ability of the team with cognitive

Cooperation was stronger than that without cognitive

Cooperation.

The proposed approach provides a practicable way

to manage the software development ability of the

team during problem solving process. The case study

shows that the approach has four advantages: (1) it

helps to generate cognitive information during the

development process; (2) it prevents the case that

the developers forget the cognitive information gen-

erated during the process; (3) it prevents the case that

the developers are not reluctant to contribute the

cognitive information after finishing the development;

(4) it can avoid the case that developers are not

reluctant to spend extra time to recollect the cognitive

information.

6. Conclusion

This paper presented an agent-based workflow

model, proposed a flow-based cognitive co-operation

approach for distributed team co-operation, and

applied the approach to team software development.

The main contribution involved three factors.

1. The cognitive flow model and management

approach provides a new way to improve

distributed team Cooperation. It can realise low-

cost and ordered cognitive information sharing,

accumulation, and inspiration during knowledge-

intensive co-operative problem solving.

2. The approach provides a way to promote the

current WfMS from work to cognitive level

H. Zhuge / Information & Management 40 (2003) 419–429 427

Cooperation by incorporating agent mechanism

and cognitive flow into the workflow model and

upgrading the management mechanism.

3. The approach provides a way to retain a team’s

problem solving capability while changing team

members.

An experiment in team software development

shows that the combination between cognitive flow

and workflow can increase a small-scale team’s devel-

opment ability. This also shows that new problem

solving abilities could be generated during a Coopera-

tion process. Incorporating the corresponding man-

agement and utilisation mechanism into current team-

ware would enhance the teams’ problem solving

capabilities. Currently, a main part of the cognitive

flow support environment has been implemented

[40,41], and is available for use at http://kg.ict.ac.cn.

Acknowledgements

The author thanks the Chairman of the Editor Board

and the anonymous referees for their helpful com-

ments on the earlier version of this paper. The research

work was supported by the National Science Founda-

tion, the National Basic Research Plan, and the

National Hi-tech R&D Plan of China.

References

[1] R.I. Brafman, M. Tennenholtz, Modelling agents as qualita-

tive decision makers, Artificial Intelligence 94, 1997, pp.

217–268.

[2] F.P. Brooks, The Mythical Man-Month: Essays on Software

Engineering, Addison-Wesley, Reading, MA, 1995.

[3] M. Cushman, L.A. Franco, J. Rosenhead, Learning from

partners in the construction industry: a feedback approach to

cross-organisational learning, in: Proceedings of the Eighth

International Conference in Multi-Organisational Partnerships

and Co-operative Strategy, Bristol, UK, 12–14 July 2001.

[4] P.F. Drucker (Ed.), Harvard Business Review on Knowledge

Management, Harvard Business School Press, Boston, MA,

1998.

[5] A. Geppert, D. Tombros, K.R. Dittrich, Defining the

semantics of reactive components in event-driven workflow

execution with event histories, Information Systems 23 (3/4),

1998, pp. 235–252.

[6] B.R. Gaines, Knowledge management in societies of

intelligent adaptive agents, Journal of Intelligent Information

Systems 9 (3), 1977, pp. 277–298.

[7] A.K. Goel, Design, analogy and creativity, IEEE Expert 12

(3), 1997, pp. 62–70.

[8] B.J. Grosz, S. Kraus, Collaborative plans for complex group

action, Artificial Intelligence 86, 1996, pp. 269–357.

[9] C.C. Hayes, Agents in a nutshell—a very brief introduction,

IEEE Transactions on Knowledge and Data Engineering 11,

1999, pp. 127–132.

[10] W. Huang et al., Effects of group support system and task

type on social influences in small groups, IEEE Transactions

on System, Man and Cybernetics 27, 1997, pp. 578–587.

[11] N.R. Jennings, On agent-based software engineering, Artifi-

cial Intelligence 117, 2000, pp. 277–296.

[12] P.D. Karp, V.K. Chaudhri, S.M. Paley, A collaborative

environment for authoring large knowledge bases, Journal

of Intelligent Information Systems 13 (3), 1999, pp. 155–

194.

[13] S.O. Kimbrough, S.A. Moore, On automated message

processing in electronic commerce and work support systems:

speech act theory and expressive felicity, ACM Transactions

on Information Systems 5 (4), 1997, pp. 321–367.

[14] S. Kraus, Negotiation and Cooperation in multi-agent

environments, Artificial Intelligence 94, 1997, pp. 79–97.

[15] P. Lawrence (Ed.), Workflow Handbook 1997, Wiley, New

York, 1997.

[16] F. Leymann, D. Roller, Workflow-based applications, IBM

Systems Journal 36 (1), 1997, pp. 102–122.

[17] V.R. Lesser, Co-operative multiagent systems: a personal

view of the state of the art, IEEE Transactions on Knowledge

and Data Engineering 11 (1), 1999, pp. 133–142.

[18] D.A. March, W.J. Kettinger, J.D. Rollins, Information

orientation: people, technology and the bottom line, Sloan

Management Review Summer (2000) 69–80.

[19] J. Mayfield, Y. Labrou, T. Finin, Evaluation of KQML as an

agent communication language, http://www.cs.umbc.edu.

[20] P. Muth et al., From centralized workflow specification to

distributed workflow execution, Journal of Intelligent In-

formation Systems 10 (2), 1998, pp. 159–184.

[21] J. Puustjarvi, H. Tirri, J. Veijalainen, Reusability and

modularity in transactional workflows, Information Systems

22 (2/3), 1997, pp. 101–120.

[22] R. Rada, IT skills standards, Communications of the ACM 42

(4), 1999, pp. 21–37.

[23] S. Ram, V. Ramesh, Collaborative conceptual schema design:

a process model and prototype system, ACM Transactions on

Information Systems 16 (4), 1998, pp. 347–371.

[24] M. Reichert, P. Dadam, Adept-flex—supporting dynamic

changes of workflows without losing control, Journal of

Intelligent Information Systems 10 (2), 1998, pp. 93–129.

[25] P.N. Robillard, The role of knowledge in software deve-

lopment, Communication of the ACM 42 (1), 1999, pp. 87–

92.

[26] T.J. Rogers, R. Ross, V.S. Subrahmanian, IMPACT: a system

for building agent applications, Journal of Intelligent

Information Systems 14 (2/3), 2000, pp. 95–113.

[27] T. Rose, Visual assessment of engineering processes in virtual

enterprises, Communications of the ACM 41 (12), 1998, pp.

45–52.

428 H. Zhuge / Information & Management 40 (2003) 419–429

HTTP://KG.ICT.AC.CN
HTTP://WWW.CS.UMBC.EDU

[28] B. Shneiderman, Creating creativity: user interfaces for

supporting innovation, ACM Transactions on Computer–

Human Interaction 7 (1), 2000, pp. 114–138.

[29] M. Tambe et al., Building agent teams using an explicit

teamwork model and learning, Artificial Intelligence 110,

1999, pp. 215–239.

[30] M. Tambe, Towards flexible teamwork, Journal of Artificial

Intelligence Research 7, 1997, pp. 83–124.

[31] WfMC, The workflow reference model, http://www.wfmc.org.

[32] WIDE Consortium, WIDE workflow development methodol-

ogy, http://dis.sema.es/projects/WIDE/Documents/.

[33] H. Zhuge, J. Ma, X.Q. Shi, Analogy and abstract in cognitive

space: a software process model, Information and Software

Technology 39, 1997, pp. 463–468.

[34] H. Zhuge, Conflict decision training through multi-space co-

operation, Decision Support Systems 29, 2000, pp. 111–123.

[35] H. Zhuge, T.Y. Cheung, H.K. Pung, A timed workflow

process model, Journal of Systems and Software 55, 2001, pp.

232–243.

[36] H. Zhuge, X. Shi, Communication cost of cognitive co-

operation for team development, Journal of Systems and

Software 57, 2001, pp. 227–233.

[37] H. Zhuge, Inheritance rules for flexible model retrieval,

Decision Support Systems 22 (4), 1998, pp. 379–390.

[38] H. Zhuge, X. Shi, A dynamic evaluation approach for virtual

conflict decision training, IEEE Transactions on Systems Man

and Cybernetics 30, 2000, pp. 374–380.

[39] H. Zhuge et al., A federation-agent workflow simulation

framework for virtual organization development, Information

and Management 39 (4), 2002, pp. 325–336.

[40] H. Zhuge, et al., KGCL: A knowledge-grid-based co-

operative learning environment, Lecture Notes in Computer

Science, in: Proceedings of the First International Conference

on Web-Based Learning, Hong Kong, August 2002, Springer,

Berlin.

[41] H. Zhuge, A knowledge grid model and platform for global

knowledge sharing, Expert Systems with Applications 22 (4),

2002, pp. 313–320.

Hai Zhuge is a professor at the Institute

of Computing Technology, Chinese

Academy of Sciences. His current

research interests include: semantic

grid, knowledge flow management, pro-

blem-oriented model base systems,

component reuse, cognitive-based soft-

ware process model, inter-operation

model for group decision, and web-

based workflow model. He is now the

leader of the China Knowledge Grid

project Vega-KG. He is the author of one book and over 40 papers

appeared mainly in leading international conferences and the

following international journals: IEEE Transactions on Systems,

Man, and Cybernetics; Information and Management; Decision

Support Systems; Journal of Systems and Software; International

Journal of Co-operative Information Systems; Expert Systems with

Applications, Knowledge-based Systems; Information and Software

Technology; Journal of Software; and Lecture Notes in Computer

Science.

H. Zhuge / Information & Management 40 (2003) 419–429 429

HTTP://WWW.WFMC.ORG
HTTP://DIS.SEMA.ES/PROJECTS/WIDE/DOCUMENTS/

	Workflow- and agent-based cognitive flow management for distributed team Cooperation
	Introduction
	Agent-based workflow: modelling active human Cooperation
	Cognitive flow in a co-operative team
	Cognitive flow management
	A case study: cognitive Cooperation in distributed team software development
	Case description and related work
	Solution description
	Cognitive flow in software development
	Experimental comparison

	Conclusion
	Acknowledgements
	References

