
Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

Completeness of Query Operations on Resource Spaces*

Hai Zhuge and Erlin Yao

China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, P. R. China

zhuge@ict.ac.cn; alin.yao@kg.ict.ac.cn

Abstract

A great variety of languages can be designed by
different people for different purposes to operate
resource spaces. Two fundamental issues are: can we
design more operations in addition to existing
operations? and, how many operations are sufficient
or necessary? This paper solves these problems by
investigating the theoretical basis for determining how
complete a selection capability is provided in a
resource operation sublanguage independent of any
host language. The result is very useful to the design
and analysis of operating languages.

Keywords: Resource Space Model, query, operation,
completeness, sufficiency, expressiveness.

1. Introduction

The Resource Space Model (RSM) is a semantic data
model for effectively specifying, locating and
managing resources based on normalized classification
semantics.

A Resource Space is an n-dimensional space where
every point uniquely determines one resource or a set
of related resources. A resource space can be
represented as RS(X1, X2, …, Xn) or RS in simple,
where RS is the name of the resource space and Xi is
the name of an axis [11]. Normal forms are proposed
to ensure a good resource space design [10].

Fig.1 is an example of 3-dimensional resource
space. Coordinates on an axis constitute a
classification on the axis, and axes further classify
each other. Given a set of coordinates (Year=2004,
Area=Knowledge Grid, Publisher=World Scientific), a
set of resources (books) can be accurately located.

A number of operations of resource spaces, such as
Join, Disjoin, Merge and Split, are defined in [10]. The
principles for designing Resource Operation Language
(ROL) of RSM are proposed in [12]. The theory on
the relationship between the normal forms and the
operations are developed in [12].

Fig. 1. A 3-dimensional Resource Space.

A great variety of languages could be designed by

different developers for different purposes to query
and update resource spaces. This paper investigates a
theoretical basis which can be used to determine how
complete a selection capability is provided in a
proposed resource sublanguage independent of any
host language in which the sublanguage may be
embedded. We especially concern: are the defined
operations sufficient and how many operations are
necessary?

Relational algebra and calculus are used in the
relational data model. The relational algebra is a
collection of operations on relations, and a query
language could be directly based on it. There are eight
operations defined in the relational algebra, they are
extended Cartesian product, traditional set operations
(union, intersection and difference), projection, join,
division and selection [5]. The relational calculus is an
applied predicate calculus which may also be used in

Books

World
Scientific

2004

Year

Publisher

Area
Knowledge
Grid

* Keynote at 2nd International Conference on Semantics,
Knowledge and Grid, Guilin, China, 2006. Research supported
by National Science Foundation and National Basic Research
Program of China (973 project no. 2003CB317000).

Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

the formulation of queries on any database consisting
of a finite collection of relations in a simple normal
form. A data sublanguage (called ALPHA), established
directly on the relational calculus, was informally
described in [6]. The equivalence of relational algebra
and relational calculus was proved in [9]. An algebra
or calculus is relationally complete if, given any finite
collection of relations R1, R2, …, RN in normal form,
the expressions of the algebra or calculus permit
definition of any relation definable from R1, R2, …, RN
by alpha expressions [7]. A relational database
language SQL (Structured Query Language) based on
the relational algebra and calculus was proposed [1, 2,
3, 4].

The relational table in relational data model is based
on attributes of entities and their functional
dependence. Data are normalized in flat tables. While,
the Resource Space Model is based on normalized
classifications. Resources are normalized in multi-
dimensional spaces where coordinates can be
hierarchical. So new query languages are needed for
querying resource spaces.

2. Completeness of Resource Space
Operations

2.1. Basic Idea

Suppose S is the discussed domain, an operation op on
S is a mapping op: S×…×S→S, op(s1, … , sn)= s,
where s and s1, … , sn belong to S. When n=1, op is an
unary operation like Disjoin and Split; when n=2, op is
a binary operation like Join and Merge [11]. In
applications, we can only consider unary and binary
operations.

Given two sets A and B, if we only consider the set
operations between them, then how many operations
are sufficient? Experience tells us that three operations
— union, intersection and difference are sufficient. But
what is the reason? Can we define other operations?

Fig. 2. An example for discussing the sufficiency of

set operations

As shown in Fig.2, A and B are divided into three
parts according to the distribution of their elements
(here we do not consider the simpler cases where some
parts are empty). Part 1 consists of elements which are
in A but not in B. Part 2 consists of elements which are
both in A and B. Part 3 consists of elements which are
in B but not in A. If the empty set ∅ is also considered
as a result, then there are totally 23=8 required sets,
which are: {∅, Part 1, Part 2, Part 3, Part 1 and Part 2,
Part 1 and Part 3, Part 2 and Part 3, Part 1 and Part 2
and Part 3}, which actually are: {∅, A−B, A∩B, B−A,
A, A⊕B, B, A∪B}, where ⊕ is called symmetric
difference [8]. We can see that the operations set {∪,
∩, −, ⊕} are sufficient, because from A and B, these
operations can get all the required results. Among
these four operations, only ∪ and – are necessary,
because ∩ and ⊕ can be represented by them: A∩B=
A− (A−B), and A⊕B= (A−B) ∪ (B−A).

This inspires us to explore the theoretical basis for
the design and analysis of resource space query
languages.

An operation set is called sufficient only when it
can get all the required results, and an operation set is
called necessary only when it is the smallest sufficient
operation set.

2.2. Sufficient and Necessary Operations on
Resource Space

Suppose two resource spaces RS1 and RS2 have the
same number of dimensions, and the corresponding
axes are the same under the same domain ontology.
Then we can define the operations Union, Difference
and Intersection as follows:

Operation 1. Union ⎯ The union of two resource
spaces RS1 and RS2 is: RS1∪RS2={(x1, … , xn) | (x1, … ,
xn)∈ RS1 or (x1, … , xn)∈ RS2}, i.e., the result is a
resource space with n axes consisting of resources in
points in RS1 or in RS2.

Operation 2. Difference ⎯ The difference of two
resource spaces RS1 and RS2 is: RS1-RS2={ (x1, … , xn)
| (x1, … , xn)∈ RS1 and (x1, … , xn)∉ RS2}, i.e., the
result is a resource space with n axes consisting of
resources in points in RS1 but not in RS2.

Operation 3. Intersection ⎯ The Intersection of two
resource spaces RS1 and RS2 is: RS1∩RS2={ R(x1, … ,
xn) | R(x1, … , xn)∈ RS1 and (x1, … , xn) ∈ RS2}, i.e.,
the result is also a resource space with n axes
consisting of resources in points in RS1 and in RS2.

A B1 2 3

Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

Given two operations op1 and op2 on two resource
spaces RS1 and RS2, we use op1(RS1) to represent the
result of operating RS1 by unary operation op1, and use
RS1 op2 RS2 to represent the result of operating RS1 and
RS2 by binary operation op2. Then, all the resource
spaces we can get from the set {RS1, RS2} by using the
set {op1, op2} can be listed as: {op1(RS1), op1(RS2), RS1
op2 RS2, op1(op1 (RS1), op1(op1(RS2), op1(RS1 op2 RS2),
…}. Then, the following definition can be given.

Definition 1. Given a set of resource spaces RSS and a
set of operations OP on the resource spaces, RSSOP
denotes all the resource spaces that can be got from
RSS by a sequence of operations in OP.

For example, for RSS={RS1, RS2}, if OPs={∪, ∩},
then RSSOPs ={RS1, RS2, RS1∪RS2, RS1∩RS2}; if
OPt={∪}, then RSSOPt={RS1, RS2, RS1∪RS2}. This
example is simple, but in many cases, it is not easy to
compute RSSOP by given RSS and OP. For example,
for RSS={RS1, RS2} and OP={-}, one may think that
RSSOP ={RS1-RS2, RS2-RS1}. But in fact, RSSOP ={∅,
RS1, RS2, RS1-RS2, RS2-RS1, RS1∩RS2}, because RS1-
(RS1- RS2)= RS1∩ RS2 and RS1- (RS1- (RS1- RS2))=
RS1- RS2.

It is clear that if OPs ⊇ OPt, then RSSOPs ⊇ RSSOPt,
which means that defining new operations can get
more results. But the definition of new operations is
infinite, then how many operations are sufficient
enough? The inherent requirements of data model have
decided the completeness of operations before hand,
when the defined operations set can meet the
requirements of data model, then it can be called
sufficient.

Intuitively, given any set of resource spaces RSS, if
an operation set OP can get all the required results,
then OP can be called sufficient. So the definition of a
sufficient operation set can be given as follows:

Definition 2. An operation set OP of resource space is
called sufficient, if for any set of resource spaces RSS,
all required results are in RSS OP.

Suppose an operation set OPs is sufficient and OPt is
a real subset of OPs, if RSSOPs= RSSOPt, then OPt is
also sufficient and the operations in OPs-OPt are not
necessary. Then we can give the definition of a
necessary operation as follows:

Definition 3. An operation set OPs of resource space is
called necessary if OPs is sufficient and there does
exist a real subset OPt of OPs such that RSS OPs =
RSSOPt.

For example, when we only consider the traditional
set operations, the set OPs={∪, -, ∩} is sufficient but
not necessary. Because for its real subset OPt={∪, -},
from RS1∩RS2= RS1-(RS1-RS2), we can get RSSOPs=
RSSOPt. And the set {∪, -} is necessary because it is
the smallest set which is sufficient in this sense.

3. Expressiveness of Different Query
Languages

Definition 4. Let RS, RS1 and RS2 be resource spaces.
Two unary operations are called equivalent to each
other if op1(RS) = op2(RS). Two binary operations are
called equivalent to each other if RS1 op1 RS2 = RS1 op2
RS2.

For example, if we define a binary operation ‘*’ as
follows:

: RS1 RS2= RS1∩(RS1∩RS2).
Then, ‘*’ is equivalent to the operation ‘∩’, i.e.,

*=∩. If two operations are equivalent to each other,
they are the same from the perspective of mapping, so
they are the same operation. As we can see, the
operation ‘*’ is composed of operation ‘∩’, then we
can say that operation ‘*’ can be represented by
operation ‘∩’. Then, we have the following definition.

Definition 5. Suppose OP is an operation set, a unary
or binary operation op is called “can be represented by
OP” if op(RS) or RS1 op RS2 can be represented as an
expression of OP.

For example, we have RS1∩RS2= RS1- (RS1- RS2),
so operation ‘∩’ can be represented by operation ‘-’.
Equivalent and representation are two basic relations
between operations discussed here.

The study of expressiveness of operations can
answer problems like “whether the defined operations
are sufficient”. The expressiveness of operations is an
abstract concept, it is difficult to be accurately defined
or described. Here the comparison between
expressiveness is given.

Intuitively, given any resource spaces RSS, if
operation set OPs can get more results than OPt, then
we can say that the expressiveness of OPs is more
stronger than OPt. So a definition can be given as
follows:

Definition 6. Given two operation sets OPs and OPt,
the expressiveness of OPs is called stronger or weaker
than OPt, denoted by OPs>OPt (or OPs<OPt), if for
any RSS, RSS OPs ⊃ RSS OPt (or RSS OPs ⊂ RSS OPt) holds.

Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

Here “the more results” does not mean the whole
quantity of data, but the number of different results.
For example, for RSS ={RS1, RS2}, OPs={∪, ∩} and
OPt={∪}, we have RSSOPs ={RS1, RS2, RS1∪RS2,
RS1∩RS2}, RSSOPt ={RS1, RS2, RS1∪RS2}. The whole
quantities of data are the resources included by space
RS1∪RS2, but the operation set OPs gets one more
result RS1∩RS2, so we say that the expressiveness of
OPs is stronger than OPt.

Some characteristics of expressiveness of operations
are given in the following.

Characteristic 1. Given two operation sets OPs and
OPt, both OPs>OPt and OPs<OPt may not hold.

For example, for RSS={RS1, RS2}, OPs={∩} and
OPt={∪}, we have RSS OPs ={RS1, RS2, RS1∩RS2} and
RSSOPt ={RS1, RS2, RS1∪RS2}. So RSSOPs⊄ RSS OPt and
RSSOPt ⊄ RSSOPs, then both OPs>OPt and OPs<OPt do
not hold, which means that we cannot say the
expressiveness of which is stronger than the other.

Characteristic 2. Given two different operation sets
{OPs} and {OPt}, the expressiveness of them can be
the same.

For example, for RSS ={RS1, RS2}, OPs={∪, -} and
OPt={∪, -, ∩}, we have RSSOPs ={∅, RS1- RS2, RS1∩
RS2, RS2 - RS1, RS1, RS1⊕RS2, RS2, RS1∪RS2}=RSSOPt,
so the expressiveness of them are the same.

Characteristic 3. Given two operation sets OPs and
OPt, if OPs ⊇ OPt then OPs>OPt.

Characteristic 4. If OPr>OPs and OPs>OPt, then
OPr>OPt.

Characteristic 5. Given an operation set OPs, if OP is
equivalent to or can be represented by some operations
in OPs, then OPs>OP.

Characteristic 6. If OPs>OPt, then (OPs∪OPt)=OPs.

Characteristic 6 shows that if newly defined
operations can be represented by existing operations,
then the expressiveness of operations does not increase
in essence. This provides an approach for us to
measure the expressiveness of a set of operations or
semantic factors.

4. Design of Resource Operating
Languages

4.1. Definition of Operations

Apart from the traditional set operations defined above,
we can define the following operations.

Operation 4. Extended Cartesian Product ⎯ The
Extended Cartesian Product of two resource spaces
RS1(X11, …, X1n) and RS2(X21, …, X2m) is a resource
space with n+m axes. The preceding n axes are the
axes of RS1 and the following m axes are axes of RS2.
If RS1 has k1 points and RS2 has k2 points, then the
Extended Cartesian Product of RS1 and RS2 has k1×k2
points, we denote it as RS1×RS2={(x11, …, x1n, x21, … ,
x2m) | (x11, …, x1n) ∈ RS1 and (x21, … , x2m) ∈ RS2 }.

Operation 5. Selection ⎯ It is for selecting the points
that satisfying given conditions in the Resource Space
RS, denoted as σF(RS)={t | t∈RS and F(t)=’true’},
where F, a logical expression representing the
selection conditions, has binary value ‘true’ or ‘false’.
The logic expression F is composed of the logic
operators ¬, ∧ and ∨ connecting every arithmetic
expression. In fact, the operation ‘selection’ is to
select the points that make the logic expression F be
true from the Resource Space RS.

The operations Join, Disjoin, Merge and Split have
been defined in [10] as follows:

Operation 6. Join ⎯ Let |RS| be the number of the
dimensions of the RS. If two resource spaces RS1 and
RS2 store the same type of resources and have n (n ≥1)
common axes, then they can be joined together as one
resource space RS such that RS1 and RS2 share these n
common axes and |RS|=|RS1| + |RS2| −n. RS is called
the join of RS1 and RS2, denoted as RS1⋅ RS2⇒ RS.

According to the above definition, all the resources
in the result resource space RS come from RS1 and RS2
and can be classified by more axes. The Join operation
provides an efficient method for the management of
resources defined in different resource spaces.

Operation 7. Disjoin ⎯ A resource space RS can be
disjoined into two resource spaces RS1 and RS2 that
store the same type of resources as that of RS such that
they have n (1≤n≤min(|RS1|, |RS2|)) common axes and
|RS|−n different axes, and |RS|=|RS1| + |RS2| − n
(denoted as RS⇒RS1⋅RS2).

The Disjoin operation can clarify the classification
of resources by separating large number of axes into
two small ones. Both Join and Disjoin operations keep
1NF, 2NF and 3NF of Resource Space Model.

Operation 8. Merge ⎯ If two resource spaces RS1 and
RS2 store the same type of resources and satisfy: (1)
|RS1| = |RS2| =n; and (2) they have n-1 common axes,
and there exist two different axes X' and X” satisfying

Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

the merge condition, then they can be merged into one
RS by retaining the n−1 common axes and adding a
new axis X*=X'∪X”. RS is called the merge of RS1 and
RS2, denoted as RS1∪RS2⇒RS, and |RS|= n.

Operation 9. Split ⎯ A resource space RS can be split
into two resource spaces RS1 and RS2 that store the
same type of resources as RS and have |RS| −1
common axes by splitting an axis X into two: X’ and
X’’, such that X=X’∪X’’. This split operation is
denoted as RS⇒RS1∪RS2.

By the split operation, the unconcerned coordinates
on a certain axis can be filtered out and only the
interesting coordinates are preserved.

4.2. Verification of Operations

To define a sufficient and necessary operation set is
enough in theory. But in applications, some new
operations which can be represented by existing
operations will also be defined for the convenience of
expression or operation. For example, from the Join
operation, we can naturally introduce another useful
operation: Division. And we can define another
operation Projection from the operation Disjoin. The
definition of new operations could be infinite if we
neglect the practical requirements.

Theorem 1. There exist infinite different operations.

Proof. According to definition 4, we only need to
show that there exist infinite operations which are not
equivalent to each other. We define a sequence of
operations {Θ1, Θ2, Θ3, …} as:

 Θ1: rs1 Θ1 rs2 = (rs1 ∪ rs2) × (rs1 ∩ rs2),
 Θ2: rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2),
 ……
 Θi+1: rs1 Θi+1 rs2 = (rs1 Θi rs2) Θ1 (rs1 Θi rs2),
 ……
From our definition, we have:
rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2)
= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) Θ1 ((rs1 ∪ rs2) ×

(rs1 ∩ rs2))
= (((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∪

((rs1 ∪ rs2) × (rs1 ∩ rs2))) ×
(((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∩ ((rs1 ∪ rs2) × (rs1
∩ rs2)))

= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) × ((rs1 ∪ rs2) × (rs1 ∩ rs2))
= (rs1 Θ1 rs2) × (rs1 Θ1 rs2).
 So we can see that Θ2= Θ1 × Θ1. And we conjecture

that Θi= Θi-1 × Θi-1 for any i ≥2.
rs1 Θi rs2 = (rs1 Θi-1 rs2) Θ1 (rs1 Θi-1 rs2)

= ((rs1 Θi-1 rs2) ∪ (rs1 Θi-1 rs2)) × ((rs1 Θi-1 rs2) ∩ (rs1
Θi-1 rs2))

= (rs1 Θi-1 rs2) × (rs1 Θi-1 rs2).
So we have Θi= Θi-1 × Θi-1 for any i ≥2. Then, it is

clear that operations {Θ1, Θ2, Θ3, …} are not
equivalent to each other, so they are infinite different
operations. �

Theorem 1 shows that finding a “self-contained”
operation set regardless of its applications is
impractical.

Are the nine operations we defined above sufficient
or not?

Firstly, we show that operation set {Union,
Difference, Intersection} is not sufficient. For example,
suppose the resource spaces considered are {RS1(X1,
X2), RS2(X1, Y2)}, then it is clear that space RS3(X1, X2,
Y2) is in the required results. But from {RS1(X1, X2),
RS2(X1, Y2)}, the operations {Union, Difference,
Intersection} cannot get the space RS3(X1, X2, Y2). It is
because the precondition of these traditional set
operations is that the operated spaces have the same
dimensions, and the result spaces also have the same
dimension. So from two 2-dimensional spaces, we
cannot get a 3-dimensional space. Then, it is clear that
operation set {Union, Difference, Intersection} is not
sufficient.

Then, we show that the nine operations {Union,
Difference, Intersection, Extended Cartesian Product,
Selection, Join, Disjoin, Merge, Split} defined above
are sufficient.

Theorem 2. The nine operations Union, Difference,
Intersection, Extended Cartesian Product, Selection,
Join, Disjoin, Merge and Split are sufficient for query
resource space.

Proof. For query in resource spaces, we only consider
the information in single spaces or the correlations
between spaces, so we can decide all the required
results of the query operations of Resource Space
Model. Given any finite collection of resource spaces
RS1, RS2, …, RSN in simple normal form, any required
results are in the form of {(x1, … , xd)| xk∈ RSi (Xj),
1≤i≤ N, d≥1 and 1≤k≤ d }, i.e., all the combinations of
the coordinates of the resource spaces.

For many resource spaces, we should find the
correlations between them. For a single resource space,
the smallest unit is a coordinate of one point. So we
should find any set of points in a space, and locate any
of their coordinates. So we can use the operation
Selection to choose the desired points, then use Disjoin
to get any of their coordinates. Then, the set operations
Union, Difference and Intersection can get the
combinations of them. So the operations Selection,

Technical Report of Knowledge Grid Center, KGRC-2006-03, June, 2006.

Disjoin, Union, Difference and Intersection can get all
the combinations of the coordinates of a single
resource space RSi. Then using the Extended Cartesian
Product, we can get all the combinations of the
coordinates of these finite resource spaces RS1, RS2, …,
RSN. �

In the proof process of theorem 2, we can see that
the five operations: Selection, Disjoin, Union,
Difference and Extended Cartesian Product are
sufficient and necessary.

5. Conclusions

This paper investigates the completeness of resource
space query languages, and establishes a theoretical
basis for determining how complete a selection
capability is provided in a proposed resource operation
sublanguage. An operations set can be called sufficient
only when it can get all the required results of the data
model. In this sense, a necessary operations set is the
smallest sufficient set. Based on this, we establish a
framework to compare the expressiveness of different
resource sublanguages. Finally, we design a set of
resource query operations and verify their
completeness. This result is significant in directing the
design of a resource space operation sublanguage.

The proposed approach can be used in the study of
the expressiveness and completeness of the
interconnection semantics, for example, a set of
primitive semantic links [13].

Acknowledgement: The authors thank all team
members of China Knowledge Grid Research Group
(http://www.knowledgegrid.net) for their help and
cooperation.

6. References

[1] ANSI, 1986. The Database Language SQL. Document
ANSI X3.315.
[2] R. Boyce, D. D. Chamberlin, M. Hammer, et al.
“Specifying Queries as Relational Expressions”,
Communications of the ACM, 18: 11, November 1975.
[3] D. D. Chamberlin, R. Boyce, “SEQUEL: A Structured
English Query Language”, Proc. ACM SIGMOD Workshop
on Data Description. Access and Control, May 1974.
[4] D. D. Chamberlin, et al. “SEQUEL 2: A Unified
Approach to Data Definition, Manipulation and Control”,
IBM Journal of Research and Development. 20, No. 6,
November 1976.
[5] E. F. Codd, “A Relational Model of Data for Large
Shared Data Banks”, Communications of the ACM, 13 (6)
(1970) 377-387.

[6] E. F. Codd, “A Data Base Sublanguage Founded on the
Relational Calculus”, Proc. ACM-SIGFIDET Workshop on
Data Description. Access, and Control, November 1971.
[7] E. F. Codd, “Relational Completeness of Data Base
Sublanguages in Data Base Systems”, Courant Computer
Science Symposia Series, Vol. 6, 1972.
[8] R. S. Robert, Set Theory and Logic, Courier Dover
Publications, Oct 1979.
[9] J. Ullman, Principles of Database Systems, Second
Edition, Computer Science Press, 1982.
[10] H. Zhuge, “Resource Space Grid: Model, Method and
Platform”, Concurrency and Computation: Practice and
Experience, 16 (14) (2004) 1385-1413.
[11] H. Zhuge, “Resource Space Model, Its Design Method
and Applications”, Journal of Systems and Software, 72 (1)
(2004) 71-81.
[12] H. Zhuge, The Knowledge Grid, World Scientific, 2004.
[13] H. Zhuge, The Open and Autonomous Interconnection
Semantics, Keynote at 8th International Conference on
Electronic Commerce, Canada, August, 2006.

http://www.knowledgegrid.net/
http://www3.interscience.wiley.com/cgi-bin/abstract/109609086/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/109609086/ABSTRACT

	1. Introduction
	2. Completeness of Resource Space Operations
	2.1. Basic Idea
	2.2. Sufficient and Necessary Operations on Resource Space

	3. Expressiveness of Different Query Languages
	4. Design of Resource Operating Languages
	4.1. Definition of Operations
	4.2. Verification of Operations

	5. Conclusions
	6. References

