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Abstract 

 
A great variety of languages can be designed by 
different people for different purposes to operate 
resource spaces. Two fundamental issues are: can we 
design more operations in addition to existing 
operations? and, how many operations are sufficient 
or necessary? This paper solves these problems by 
investigating the theoretical basis for determining how 
complete a selection capability is provided in a 
resource operation sublanguage independent of any 
host language.  The result is very useful to the design 
and analysis of operating languages. 
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1. Introduction 
 
The Resource Space Model (RSM) is a semantic data 
model for effectively specifying, locating and 
managing resources based on normalized classification 
semantics.  

A Resource Space is an n-dimensional space where 
every point uniquely determines one resource or a set 
of related resources. A resource space can be 
represented as RS(X1, X2, …, Xn) or RS in simple, 
where RS is the name of the resource space and Xi is 
the name of an axis [11].    Normal forms are proposed 
to ensure a good resource space design [10]. 

Fig.1 is an example of 3-dimensional resource 
space. Coordinates on an axis constitute a 
classification on the axis, and axes further classify 
each other. Given a set of coordinates (Year=2004, 
Area=Knowledge Grid, Publisher=World Scientific), a 
set of resources (books) can be accurately located. 

 
 
 
 

A number of operations of resource spaces, such as 
Join, Disjoin, Merge and Split, are defined in [10]. The 
principles for designing Resource Operation Language 
(ROL) of RSM are proposed in [12].  The theory on 
the relationship between the normal forms and the 
operations are developed in [12]. 

 

 
 

Fig. 1. A 3-dimensional Resource Space. 
 
A great variety of languages could be designed by 

different developers for different purposes to query 
and update resource spaces. This paper investigates a 
theoretical basis which can be used to determine how 
complete a selection capability is provided in a 
proposed resource sublanguage independent of any 
host language in which the sublanguage may be 
embedded. We especially concern: are the defined 
operations sufficient and how many operations are 
necessary?   

Relational algebra and calculus are used in the 
relational data model. The relational algebra is a 
collection of operations on relations, and a query 
language could be directly based on it. There are eight 
operations defined in the relational algebra, they are 
extended Cartesian product, traditional set operations 
(union, intersection and difference), projection, join, 
division and selection [5]. The relational calculus is an 
applied predicate calculus which may also be used in 
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the formulation of queries on any database consisting 
of a finite collection of relations in a simple normal 
form. A data sublanguage (called ALPHA), established 
directly on the relational calculus, was informally 
described in [6]. The equivalence of relational algebra 
and relational calculus was proved in [9]. An algebra 
or calculus is relationally complete if, given any finite 
collection of relations R1, R2, …, RN in normal form, 
the expressions of the algebra or calculus permit 
definition of any relation definable from R1, R2, …, RN 
by alpha expressions [7]. A relational database 
language SQL (Structured Query Language) based on 
the relational algebra and calculus was proposed [1, 2, 
3, 4]. 

The relational table in relational data model is based 
on attributes of entities and their functional 
dependence.  Data are normalized in flat tables. While, 
the Resource Space Model is based on normalized 
classifications. Resources are normalized in multi-
dimensional spaces where coordinates can be 
hierarchical. So new query languages are needed for 
querying resource spaces. 
 
2. Completeness of Resource Space 
Operations 
 
2.1. Basic Idea 
 
Suppose S is the discussed domain, an operation op on 
S is a mapping op: S×…×S→S, op(s1, … , sn)= s, 
where s and s1, … , sn belong to S.  When n=1, op is an 
unary operation like Disjoin and Split; when n=2, op is 
a binary operation like Join and Merge [11]. In 
applications, we can only consider unary and binary 
operations. 

Given two sets A and B, if we only consider the set 
operations between them, then how many operations 
are sufficient? Experience tells us that three operations 
— union, intersection and difference are sufficient. But 
what is the reason? Can we define other operations? 

 

 
Fig. 2. An example for discussing the sufficiency of 

set operations 
 

As shown in Fig.2, A and B are divided into three 
parts according to the distribution of their elements 
(here we do not consider the simpler cases where some 
parts are empty). Part 1 consists of elements which are 
in A but not in B. Part 2 consists of elements which are 
both in A and B. Part 3 consists of elements which are 
in B but not in A. If the empty set ∅ is also considered 
as a result, then there are totally 23=8 required sets, 
which are: {∅, Part 1, Part 2, Part 3, Part 1 and Part 2, 
Part 1 and Part 3, Part 2 and Part 3, Part 1 and Part 2 
and Part 3}, which actually are: {∅, A−B, A∩B, B−A, 
A, A⊕B, B, A∪B}, where ⊕ is called symmetric 
difference [8]. We can see that the operations set {∪, 
∩, −, ⊕} are sufficient, because from A and B, these 
operations can get all the required results. Among 
these four operations, only ∪ and – are necessary, 
because ∩ and ⊕ can be represented by them: A∩B= 
A− (A−B), and A⊕B= (A−B) ∪ (B−A). 

This inspires us to explore the theoretical basis for 
the design and analysis of resource space query 
languages.   

An operation set is called sufficient only when it 
can get all the required results, and an operation set is 
called necessary only when it is the smallest sufficient 
operation set. 
 
2.2. Sufficient and Necessary Operations on 
Resource Space 
 
Suppose two resource spaces RS1 and RS2 have the 
same number of dimensions, and the corresponding 
axes are the same under the same domain ontology.  
Then we can define the operations Union, Difference 
and Intersection as follows: 

Operation 1. Union ⎯ The union of two resource 
spaces RS1 and RS2 is: RS1∪RS2={(x1, … , xn) | (x1, … , 
xn)∈ RS1 or (x1, … , xn)∈ RS2}, i.e., the result is a 
resource space with n axes consisting of resources in 
points in RS1 or in RS2. 

Operation 2. Difference ⎯ The difference of two 
resource spaces RS1 and RS2 is: RS1-RS2={ (x1, … , xn) 
| (x1, … , xn)∈ RS1 and (x1, … , xn)∉ RS2}, i.e., the 
result is a resource space with n axes consisting of 
resources in points in RS1 but not in RS2. 

Operation 3. Intersection ⎯ The Intersection of two 
resource spaces RS1 and RS2 is: RS1∩RS2={ R(x1, … , 
xn) | R(x1, … , xn)∈ RS1 and (x1, … , xn) ∈ RS2}, i.e.,  
the result is also a resource space with n axes 
consisting of resources in points in RS1 and in RS2. 

A B1 2 3 
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Given two operations op1 and op2 on two resource 
spaces RS1 and RS2, we use op1(RS1) to represent the 
result of operating RS1 by unary operation op1, and use 
RS1 op2 RS2 to represent the result of operating RS1 and 
RS2 by binary operation op2. Then, all the resource 
spaces we can get from the set {RS1, RS2} by using the 
set {op1, op2} can be listed as: {op1(RS1), op1(RS2), RS1 
op2 RS2, op1(op1 (RS1), op1(op1(RS2), op1(RS1 op2 RS2), 
…}. Then, the following definition can be given. 

Definition 1. Given a set of resource spaces RSS and a 
set of operations OP on the resource spaces, RSSOP 
denotes all the resource spaces that can be got from 
RSS by a sequence of operations in OP. 

For example, for RSS={RS1, RS2}, if OPs={∪, ∩}, 
then RSSOPs ={RS1, RS2, RS1∪RS2, RS1∩RS2}; if 
OPt={∪}, then RSSOPt={RS1, RS2, RS1∪RS2}. This 
example is simple, but in many cases, it is not easy to 
compute RSSOP by given RSS and OP. For example, 
for RSS={RS1, RS2} and OP={-}, one may think that 
RSSOP ={RS1-RS2, RS2-RS1}. But in fact, RSSOP ={∅, 
RS1, RS2, RS1-RS2, RS2-RS1, RS1∩RS2}, because RS1- 
(RS1- RS2)= RS1∩ RS2 and RS1- (RS1- (RS1- RS2))= 
RS1- RS2. 

It is clear that if OPs ⊇ OPt, then RSSOPs ⊇ RSSOPt, 
which means that defining new operations can get 
more results. But the definition of new operations is 
infinite, then how many operations are sufficient 
enough? The inherent requirements of data model have 
decided the completeness of operations before hand, 
when the defined operations set can meet the 
requirements of data model, then it can be called 
sufficient. 

Intuitively, given any set of resource spaces RSS, if 
an operation set OP can get all the required results, 
then OP can be called sufficient. So the definition of a 
sufficient operation set can be given as follows: 

Definition 2. An operation set OP of resource space is 
called sufficient, if for any set of resource spaces RSS, 
all required results are in RSS OP. 

Suppose an operation set OPs is sufficient and OPt is 
a real subset of OPs, if RSSOPs= RSSOPt, then OPt is 
also sufficient and the operations in OPs-OPt are not 
necessary. Then we can give the definition of a 
necessary operation as follows: 

Definition 3. An operation set OPs of resource space is 
called necessary if OPs is sufficient and there does 
exist a real subset OPt of OPs such that RSS OPs = 
RSSOPt. 

For example, when we only consider the traditional 
set operations, the set OPs={∪, -, ∩} is sufficient but 
not necessary. Because for its real subset OPt={∪, -}, 
from RS1∩RS2= RS1-(RS1-RS2), we can get RSSOPs= 
RSSOPt. And the set {∪, -} is necessary because it is 
the smallest set which is sufficient in this sense. 
 
3. Expressiveness of Different Query 
Languages 
 

Definition 4. Let RS, RS1 and RS2 be resource spaces. 
Two unary operations are called equivalent to each 
other if op1(RS) = op2(RS). Two binary operations are 
called equivalent to each other if RS1 op1 RS2 = RS1 op2 
RS2.  

For example, if we define a binary operation ‘*’ as 
follows: 

*: RS1* RS2= RS1∩(RS1∩RS2). 
Then, ‘*’ is equivalent to the operation ‘∩’, i.e., 

*=∩. If two operations are equivalent to each other, 
they are the same from the perspective of mapping, so 
they are the same operation. As we can see, the 
operation ‘*’ is composed of operation ‘∩’, then we 
can say that operation ‘*’ can be represented by 
operation ‘∩’. Then, we have the following definition. 

Definition 5. Suppose OP is an operation set, a unary 
or binary operation op is called “can be represented by 
OP” if op(RS) or RS1 op RS2 can be represented as an 
expression of OP. 

For example, we have RS1∩RS2= RS1- (RS1- RS2), 
so operation ‘∩’ can be represented by operation ‘-’. 
Equivalent and representation are two basic relations 
between operations discussed here. 

The study of expressiveness of operations can 
answer problems like “whether the defined operations 
are sufficient”. The expressiveness of operations is an 
abstract concept, it is difficult to be accurately defined 
or described. Here the comparison between 
expressiveness is given. 

Intuitively, given any resource spaces RSS, if 
operation set OPs can get more results than OPt, then 
we can say that the expressiveness of OPs is more 
stronger than OPt. So a definition can be given as 
follows: 

Definition 6. Given two operation sets OPs and OPt, 
the expressiveness of OPs is called stronger or weaker 
than OPt, denoted by OPs>OPt (or OPs<OPt), if for 
any RSS, RSS OPs  ⊃ RSS OPt (or RSS OPs ⊂ RSS OPt) holds. 
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Here “the more results” does not mean the whole 
quantity of data, but the number of different results. 
For example, for RSS ={RS1, RS2}, OPs={∪, ∩} and 
OPt={∪}, we have RSSOPs ={RS1, RS2, RS1∪RS2, 
RS1∩RS2}, RSSOPt ={RS1, RS2, RS1∪RS2}. The whole 
quantities of data are the resources included by space 
RS1∪RS2, but the operation set OPs gets one more 
result RS1∩RS2, so we say that the expressiveness of 
OPs is stronger than OPt. 

Some characteristics of expressiveness of operations 
are given in the following. 

Characteristic 1. Given two operation sets OPs and 
OPt, both OPs>OPt and OPs<OPt may not hold. 

For example, for RSS={RS1, RS2}, OPs={∩} and 
OPt={∪}, we have RSS OPs ={RS1, RS2, RS1∩RS2} and 
RSSOPt ={RS1, RS2, RS1∪RS2}. So RSSOPs⊄ RSS OPt and 
RSSOPt ⊄ RSSOPs, then both OPs>OPt and OPs<OPt do 
not hold, which means that we cannot say the 
expressiveness of which is stronger than the other. 

Characteristic 2. Given two different operation sets 
{OPs} and {OPt}, the expressiveness of them can be 
the same. 

For example, for RSS ={RS1, RS2}, OPs={∪, -} and 
OPt={∪, -, ∩}, we have RSSOPs ={∅, RS1- RS2, RS1∩ 
RS2, RS2 - RS1, RS1, RS1⊕RS2, RS2, RS1∪RS2}=RSSOPt, 
so the expressiveness of them are the same. 

Characteristic 3. Given two operation sets OPs and 
OPt, if OPs ⊇ OPt then OPs>OPt. 

Characteristic 4. If OPr>OPs and OPs>OPt, then 
OPr>OPt. 

Characteristic 5. Given an operation set OPs, if OP is 
equivalent to or can be represented by some operations 
in OPs, then OPs>OP. 

Characteristic 6. If OPs>OPt, then (OPs∪OPt)=OPs. 

Characteristic 6 shows that if newly defined 
operations can be represented by existing operations, 
then the expressiveness of operations does not increase 
in essence.  This provides an approach for us to 
measure the expressiveness of a set of operations or 
semantic factors. 
 
4. Design of Resource Operating 
Languages 
 
4.1. Definition of Operations 
 

Apart from the traditional set operations defined above, 
we can define the following operations. 

Operation 4. Extended Cartesian Product  ⎯ The 
Extended Cartesian Product of two resource spaces 
RS1(X11, …, X1n) and RS2(X21, …, X2m) is a resource 
space with n+m axes. The preceding n axes are the 
axes of RS1 and the following m axes are axes of RS2. 
If RS1 has k1 points and RS2 has k2 points, then the 
Extended Cartesian Product of RS1 and RS2 has k1×k2 
points, we denote it as RS1×RS2={(x11, …, x1n, x21, … , 
x2m) | (x11, …, x1n) ∈ RS1 and (x21, … , x2m) ∈ RS2 }. 

Operation 5. Selection ⎯ It is for selecting the points 
that satisfying given conditions in the Resource Space 
RS, denoted as σF(RS)={t | t∈RS and F(t)=’true’}, 
where F, a logical expression representing the 
selection conditions, has binary value ‘true’ or ‘false’. 
The logic expression F is composed of the logic 
operators ¬, ∧ and ∨ connecting every arithmetic 
expression. In fact,  the operation ‘selection’ is to 
select the points that make the logic expression F be 
true from the Resource Space RS. 

The operations Join, Disjoin, Merge and Split have 
been defined in [10] as follows: 

Operation 6. Join ⎯ Let |RS| be the number of the 
dimensions of the RS. If two resource spaces RS1 and 
RS2 store the same type of resources and have n (n ≥1) 
common axes, then they can be joined together as one 
resource space RS such that RS1 and RS2 share these n 
common axes and |RS|=|RS1| + |RS2| −n. RS is called 
the join of RS1 and RS2, denoted as RS1⋅ RS2⇒ RS. 

According to the above definition, all the resources 
in the result resource space RS come from RS1 and RS2 
and can be classified by more axes. The Join operation 
provides an efficient method for the management of 
resources defined in different resource spaces. 

Operation 7. Disjoin ⎯ A resource space RS can be 
disjoined into two resource spaces RS1 and RS2 that 
store the same type of resources as that of RS such that 
they have n (1≤n≤min(|RS1|, |RS2|)) common axes and 
|RS|−n different axes, and |RS|=|RS1| + |RS2| − n 
(denoted as RS⇒RS1⋅RS2).  

The Disjoin operation can clarify the classification 
of resources by separating large number of axes into 
two small ones. Both Join and Disjoin operations keep 
1NF, 2NF and 3NF of Resource Space Model. 

Operation 8. Merge ⎯ If two resource spaces RS1 and 
RS2 store the same type of resources and satisfy:      (1) 
|RS1| = |RS2| =n; and (2) they have n-1 common axes, 
and there exist two different axes X' and X” satisfying 
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the merge condition, then they can be merged into one 
RS by retaining the n−1 common axes and adding a 
new axis X*=X'∪X”. RS is called the merge of RS1 and 
RS2, denoted as RS1∪RS2⇒RS, and |RS|= n. 

Operation 9. Split ⎯ A resource space RS can be split 
into two resource spaces RS1 and RS2 that store the 
same type of resources as RS and have |RS| −1 
common axes by splitting an axis X into two: X’ and 
X’’, such that X=X’∪X’’.  This split operation is 
denoted as RS⇒RS1∪RS2. 

By the split operation, the unconcerned coordinates 
on a certain axis can be filtered out and only the 
interesting coordinates are preserved. 
 
4.2. Verification of Operations 
 
To define a sufficient and necessary operation set is 
enough in theory. But in applications, some new 
operations which can be represented by existing 
operations will also be defined for the convenience of 
expression or operation. For example, from the Join 
operation, we can naturally introduce another useful 
operation: Division. And we can define another 
operation Projection from the operation Disjoin. The 
definition of new operations could be infinite if we 
neglect the practical requirements. 

Theorem 1. There exist infinite different operations. 

Proof. According to definition 4, we only need to 
show that there exist infinite operations which are not 
equivalent to each other. We define a sequence of 
operations {Θ1, Θ2, Θ3, …} as: 

    Θ1: rs1 Θ1 rs2 = (rs1 ∪ rs2) × (rs1 ∩ rs2), 
    Θ2: rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2), 
    …… 
    Θi+1: rs1 Θi+1 rs2 = (rs1 Θi rs2) Θ1 (rs1 Θi rs2), 
    …… 
From our definition, we have: 
rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2) 
= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) Θ1 ((rs1 ∪ rs2) ×  

(rs1 ∩ rs2)) 
= (((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∪  

((rs1 ∪ rs2) × (rs1 ∩ rs2))) ×  
(((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∩ ((rs1 ∪ rs2) × (rs1 
∩ rs2))) 

= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) × ((rs1 ∪ rs2) × (rs1 ∩ rs2)) 
= (rs1 Θ1 rs2) × (rs1 Θ1 rs2). 
 So we can see that Θ2= Θ1 × Θ1. And we conjecture 

that Θi= Θi-1 × Θi-1 for any i ≥2. 
rs1 Θi rs2 = (rs1 Θi-1 rs2) Θ1 (rs1 Θi-1 rs2) 

= ((rs1 Θi-1 rs2) ∪ (rs1 Θi-1 rs2)) × ((rs1 Θi-1 rs2) ∩ (rs1 
Θi-1 rs2)) 

= (rs1 Θi-1 rs2) × (rs1 Θi-1 rs2). 
So we have Θi= Θi-1 × Θi-1 for any i ≥2. Then, it is 

clear that operations {Θ1, Θ2, Θ3, …} are not 
equivalent to each other, so they are infinite different 
operations. � 

Theorem 1 shows that finding a “self-contained” 
operation set regardless of its applications is 
impractical. 

Are the nine operations we defined above sufficient 
or not?  

Firstly, we show that operation set {Union, 
Difference, Intersection} is not sufficient. For example, 
suppose the resource spaces considered are {RS1(X1, 
X2), RS2(X1, Y2)}, then it is clear that space RS3(X1, X2, 
Y2) is in the required results. But from {RS1(X1, X2), 
RS2(X1, Y2)}, the operations {Union, Difference, 
Intersection} cannot get the space RS3(X1, X2, Y2). It is 
because the precondition of these traditional set 
operations is that the operated spaces have the same 
dimensions, and the result spaces also have the same 
dimension. So from two 2-dimensional spaces, we 
cannot get a 3-dimensional space. Then, it is clear that 
operation set {Union, Difference, Intersection} is not 
sufficient.  

Then, we show that the nine operations {Union, 
Difference, Intersection, Extended Cartesian Product, 
Selection, Join, Disjoin, Merge, Split} defined above 
are sufficient. 

Theorem 2. The nine operations Union, Difference, 
Intersection, Extended Cartesian Product, Selection, 
Join, Disjoin, Merge and Split are sufficient for query 
resource space. 

Proof. For query in resource spaces, we only consider 
the information in single spaces or the correlations 
between spaces, so we can decide all the required 
results of the query operations of Resource Space 
Model. Given any finite collection of resource spaces 
RS1, RS2, …, RSN in simple normal form, any required 
results are in the form of {(x1, … , xd)| xk∈ RSi (Xj), 
1≤i≤ N, d≥1 and 1≤k≤ d }, i.e., all the combinations of 
the coordinates of the resource spaces. 

For many resource spaces, we should find the 
correlations between them. For a single resource space, 
the smallest unit is a coordinate of one point. So we 
should find any set of points in a space, and locate any 
of their coordinates. So we can use the operation 
Selection to choose the desired points, then use Disjoin 
to get any of their coordinates. Then, the set operations 
Union, Difference and Intersection can get the 
combinations of them. So the operations Selection, 
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Disjoin, Union, Difference and Intersection can get all 
the combinations of the coordinates of a single 
resource space RSi.  Then using the Extended Cartesian 
Product, we can get all the combinations of the 
coordinates of these finite resource spaces RS1, RS2, …, 
RSN. � 

In the proof process of theorem 2, we can see that 
the five operations: Selection, Disjoin, Union, 
Difference and Extended Cartesian Product are 
sufficient and necessary. 
 
5. Conclusions 
 
This paper investigates the completeness of resource 
space query languages, and establishes a theoretical 
basis for determining how complete a selection 
capability is provided in a proposed resource operation 
sublanguage. An operations set can be called sufficient 
only when it can get all the required results of the data 
model. In this sense, a necessary operations set is the 
smallest sufficient set.  Based on this, we establish a 
framework to compare the expressiveness of different 
resource sublanguages. Finally, we design a set of 
resource query operations and verify their 
completeness.  This result is significant in directing the 
design of a resource space operation sublanguage. 

The proposed approach can be used in the study of 
the expressiveness and completeness of the 
interconnection semantics, for example, a set of 
primitive semantic links [13].  
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